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ABSTRACT 

This proposal describes several novel and unique techniques used in the 

separation of a speech signal corrupted by another talker's speech recorded over a single 

channel. Historically, this has been referred to as the cocktail party problem. Our work 

is useful in such applications as separating the speech signals recorded onto an in-flight 

voice data recording box from the cockpit of an airplane, enhancing the quality of speech 

transmitted through a hearing aid, and in the enhancement of speech transmitted over a 

noisy communication channel. 

We have made significant contributions to the field of speaker separation. We 

have developed and tested an adaptive co-channel speaker separation system that can 

simultaneously estimate the speech of two speakers recorded onto a single channel. We 

have developed and tested several methods to estimate the voicing state of a co-channel 

speech segment. We have developed and tested a technique to estimate the fundamental 

frequency and pitch contour of each speaker. This technique is based on the maximum 

likelihood pitch estimator and harmonic magnitude suppression. Using the estimate of 

the fundamental frequency, we have developed a technique to estimate the harmonic 

parameters of overlapping voiced speech segments. Finally, we have developed and 

tested an innovative technique to simultaneously estimate overlapping voiced speech 

segments using a constrained nonlinear least squared optimization algorithm. These 

techniques have been integrated into end-to-end speaker separation system to separate co- 

channel speech. 

XIX 



Experiments have been conducted using synthetic data, simulated co-channel 

speech data, and real co-channel speech. The simulated co-channel speech data consisted 

of male/female, male/male and female/female speech mixtures. Testing of the voicing 

state determination, joint pitch estimation and speaker separation were conducted at 

signal to interference ratios (SIRs) of 0 dB, -6 dB and -12 dB. Classification of the 

voicing state of co-channel speech attained an 84% overall correct detection rate for 

male/female speech mixtures. Performance of our joint pitch estimator proved sufficient 

to separate two speech signals, and is experimentally evaluated. It is shown that our co- 

channel speaker separation system can successfully separate overlapping speech of two 

speakers. 

XX 



1. INTRODUCTION 

In a major airline crash, the in-flight voice data recording box is one of the few pieces of 

equipment on an aircraft that is designed to remain intact. In such a catastrophic event, 

this piece of equipment becomes invaluable to the investigators determining the cause of 

the accident. The data obtained by this recorder is a single channel audio recording of the 

voices, warning sounds and background noises originating from within the cockpit of the 

aircraft leading up to the time of the accident. The problem facing the investigators is 

deciphering the content of the speech signals from the recording. This is an example of a 

problem, historically known as the cocktail party effect, in which overlapping speech 

from multiple speakers is recorded over a single channel. Co-channel speaker separation 

is the process of extracting or separating the desired speech signal from one or more 

interfering speech signals. 

In the past, co-channel speaker separation systems have been developed using 

techniques that suppress the interfering signals, enhance the desired signal or perform 

suppression and then enhancement to separate the desired speech signal from the co- 

channel signal. To date, there is no one technique that works in all situations, with most 

techniques performing only under limited situations and assume specific parameters of 

one or both speakers be given. Two parameters most widely used as a priori information 

are the voicing state and pitch contour of each speaker. This information is crucial to 

most, if not all, co-channel separation systems. 



This thesis presents an adaptive co-channel speaker separation system that 

simultaneously estimates the desired and interfering speech signals.   Our system first 

estimates the voicing state and pitch contour of each speaker. Voicing state classification 

is based on whether the co-channel signal contains speech which is produced from voiced 

sounds, unvoiced sounds, silence or some combination of these states.   Therefore, our 

determination algorithm decides when a given frame of co-channel speech contains 

voiced speech from one or both speakers, a mixture of voiced and unvoiced speech, 

unvoiced speech from one or both speakers, or silence.   An estimate is made of the 

fundamental frequency of both speakers for all co-channel speech segments, including 

those which have been determined to contain two voiced overlapping speech segments. 

The fundamental frequency estimates are used to provide initial values of the sinusoidal 

speech model parameters.   These parameters include the phase, amplitude and center 

frequency of the dominant spectral harmonics for each speaker.    Final values of these 

parameters  are obtained using  a constrained nonlinear least squared optimization 

algorithm which is used to minimize the squared error between the sum of our estimated 

speech segments and the true co-channel speech segment.  Co-channel speech segments 

that contain a mixture of voiced and unvoiced speech sounds or those segments in which 

one or both of the speakers are silent are separated using conventional filtering 

techniques.   An overlap and add technique is used to reconstruct the original speech 

signals into natural sounding speech. 

In this research we have made significant contributions to the area of speaker 

separation.   We have developed and tested a simultaneous adaptive speaker separation 



system that separates speech from two speakers recorded over a single channel. We have 

developed and tested a voicing state determination algorithm to estimate the voicing state 

of each speaker present. We have developed and tested a joint pitch estimation algorithm 

to estimate the pitch contours for two speakers. We have developed a technique that uses 

these pitch frequencies to estimate the dominant spectral harmonics for each speaker. 

Finally, we have developed and tested a technique to separate overlapping voiced speech 

from two speakers. We have conducted experiments using simulated and real speech 

signals in varying signal to interference ratio (SIR) environments to evaluate the 

performance of our algorithms and our co-channel speaker separation system. 

1.1 Historical Review 

Historically, speaker separation systems have been focused around suppression of 

the interfering speech signal or enhancement of the desired speech signal. Very few have 

concentrated on the estimation of both signals simultaneously. Regardless, all systems 

developed thus far require some form of a priori information on each of the speakers 

present. One such a priori parameter that has been widely used is pitch. Here, we will 

provide a brief historical review of the work in speaker separation, voicing determination 

and pitch estimation to obtain a more in-depth understanding as to the level of 

accomplishments in each area. This will also provide an opportunity to include some of 

the work performed in pitch estimation and voicing state determination of uncorrupted 

speech that has impacted our research. 



1.1.1 Separating Speech 

Research that resulted in significant improvement to the enhancement and 

intelligibility of a speaker in the presence of another speaker or in the presence of noise 

dates back to the 1970's with the work of Mitchell [1] and Parsons [2]. The work by 

Mitchell attempted to solve the cocktail party effect using a class of nonlinear processes 

for the output of an array of two (or more) microphones. It was shown that nonlinear 

processing proved to be more effective at suppressing unwanted sources when the 

unwanted source is near one of the microphones. This is the binaural problem, which 

will not be addressed in this work. Here, we will only be concerned with the case where 

speech has been recorded using a single microphone. 

Parsons was one of the first researchers to apply harmonic selection to suppress 

the effects of interfering speech without the benefit of binaural information. Parsons 

required that both voices be periodic, restricting the separation process to sounds which 

are vowels or vowel-like. His work dissected the Fourier transform of the signal into 

components belonging to each talker. Pitch tracking was used as a means of providing 

continuity of talker identification from segment to segment. His later work attempted to 

improve his initial system ([3],[4]). Improvements included extending the capability of 

his system to perform in a natural speech environment, to improve the intelligibility of 

the restored speech and to handle non-vocalic speech sounds. Parsons indicated that 

errors in pitch estimation resulted in the unintelligibility of restored speech using 

harmonic selection. He continued his work attempting to improve the detection of pitch 



as a way to separate speech but in a paper published in 1979 [5], he concluded his 

research with no significant improvements over the original system. 

Shields [6] and Frazier [7] investigated separating speech signals by means of a 

variable comb filter that passed only the desired talkers pitch harmonics. In both cases 

the pitch was assumed to be a known parameter. Everton [8] used pitch and formant 

information to drive a vocoder. Here, as with the previous work, the pitch was assumed 

known while formant information was derived from inspection of the combined speech 

spectrum. This was accomplished by sampling the log-magnitude spectrum of the co- 

channel speech signal at harmonics of the fundamental frequency. These samples were 

then used to construct a rough curve, which was then lowpass filtered to reconstruct an 

outline of the formant structure of a single speaker. 

Dick [9] performed some experiments with an adaptive comb filter tuned to the 

pitch harmonics of one particular speaker along with the use of the complex correlation. 

However, a major problem still remained; how to identify which speaker is making which 

sounds solely from a co-channel speech signal. 

Hanson and Wong ([10],[11],[12]) attempted to improve the intelligibility of 

overlapping speech using Harmonic Magnitude Suppression (HMS). This method has 

two distinct components, an interfering speech estimator that samples the short-term 

magnitude spectrum at the harmonics of the interfering fundamental frequency and an 

interference remover, which is based on spectral magnitude subtraction. Extensive 

testing indicated intelligibility improvement for negative dB signal to interference ratio 



(SIR) cases.  However, their technique still required an a priori estimate of the pitch of 

the interfering speaker and a determination of the voicing state of each speaker. 

Lee and Childers [13] proposed a method based on a two-stage approach. The 

first stage produced an initial estimate of the speech spectrum for each talker. The second 

stage used this initial estimate to spectrally tailor the spectrum of each talker, taking into 

account the autocorrelation function of the known co-channel composite speech signal. 

This work only showed slight improvement over that of Hanson and Wong and required 

the pitch harmonics of the speakers to be well separated for best results. 

Wientrab [14] used pitch as an input to a Markov Model to identify the number of 

people talking within a given time interval and the type of sounds being produced by each 

person present. He classified the sounds using one of three steady-state labels (silence, 

periodic, or non-periodic). Performance of the Markov Model decreased significantly 

when pitch tracks extracted from the co-channel speech signal were used as opposed to a 

priori pitch tracks taken from single speech signals before being corrupted. 

Alexander [15] used an adaptive Least Mean Squares (LMS) algorithm to separate 

target speaker produced information from non-target speaker produced noise based on the 

difference in power levels associated with the two phenomena. 

Naylor and Boll [16,17] continued the work of Hanson and Wong by estimating 

certain model parameters solely from the co-channel speech and by improving the 

technique for suppressing non-voiced interference. They investigated techniques for 

pitch tracking and magnitude suppression. The pitch estimate of the louder talker was 

measured from the co-channel signal. Their conclusion on the performance of the HMS 



technique developed by Hanson and Wong was limited by the degree to which the actual 

speech deviates from the ideal model and by the degree to which speaker specific 

parameters are recoverable from the co-channel signal. 

Kopec and Bush [18] investigated an LPC-based spectral similarity measure to 

perform speech recognition in a co-channel speech environment. It was assumed that the 

interfering speaker would introduce extra poles (corresponding to formants) into the LPC 

spectrum of co-channel signal. An attempt was made to determine which poles were 

associated with the desired speaker and which poles resulted from the interfering speaker. 

A reference spectrum was used to hypothesize whether a pole was part of the desired 

speech or from the interfering speech. The reference spectrum was very similar to the 

spectrum of the desired speaker. In isolated word recognition experiments, the authors 

demonstrated that error rates could be reduced by up to 70% at low SIRs. 

Rogers et al [19] developed an automated algorithm for multiple speech 

separation based upon a variable frame-size orthogonal transform and a spectral matching 

technique. A multi-step pitch detection scheme, which relied on the traditional 

autocorrelation function was also used. Improvements to this system later included a 

neural network to predict the number of speakers present and the voicing state of each 

speaker for each frame of co-channel speech data. This work relied on an energy 

threshold to determine the number of talkers present in the co-channel speech. These 

systems still required accurate a priori information as to the voicing state of each speaker 

present and the pitch of each speaker. 



Varga and Moore [20] used the Hidden Markov Model (HMM) to separate speech 

and noise, however tests were only conducted on speech signals corrupted by periodic 

noise, not with another speech signal. 

Gish [21] investigated a clustering technique to separate co-channel speech 

signals. This method requires no a priori information and uses a distance measure 

between speech segments based on the likelihood ratio of speech segments using 

multivariate Gaussian assumptions. 

Gu and van Bokhoven [22] developed a new approach to speaker separation using 

frequency bin nonlinear adaptive filtering along with a robust multi-pitch estimation 

routine which uses HMMs to simultaneously estimate the pitch of multiple speakers from 

the co-channel signal. Limited testing, using synthetic speech of two speakers with fixed 

but different pitches, showed improvement on attenuating most of the interfering speech 

signal. 

Quatieri and Danisewicz [23] developed a technique which combined modeling 

voiced speech as a sum of sinusoids with time-varying amplitudes along with a linear 

least mean-squared error estimation procedure to separate overlapping spectral 

harmonics. Here, they assumed that the harmonic frequencies were exact integer 

multiples of the fundamental frequency and only processed voiced speech. One major 

conclusion of this work is that further development of a pitch estimation algorithm, 

capable of handling summed waveforms of vastly different intensity levels, is crucial to 

speech separation and enhancement. 



Naylor and Porter ([24],[25]) investigated a unique technique to estimate the pitch 

of multiple speakers in a co-channel speech environment based on a Modified Covariance 

(MCV) spectrum estimator. They also investigated a linear estimation technique for 

resolving the complex spectrum of the co-channel signal into individual speakers' 

components. Testing was limited to using simulated data. 

Zissman ([26],[27]) concentrated on suppression of a jamming speech signal at 

target to jammer ratios ranging from -3 to -15 dB. Results indicated a 10 to 20 dB 

jammer attenuation, providing improved target intelligibility. He also addressed the 

problem of speaker activity detection, the labeling of co-channel speech as target-only, 

jammer-only or two-speaker (target plus jammer) speech using speaker identification 

techniques. 

The work by Savic et al. [28] developed a speaker separation system based on a 

Maximum Likelihood Deconvolution (MLD) that would simultaneously estimates the 

excitation signal of multiple speakers based on an estimate of the vocal tract filters of 

each speaker. The proposed MLD technique, required no a priori information, but was 

never demonstrated under this condition. Successful demonstration of this technique 

using parameters extracted from the speech signal a priori were conducted. They were 

unable to obtain the necessary speaker specific parameters strictly from the co-channel 

signal. 

Finally, Morgan et al. [29] proposed a co-channel speaker separation system using 

a Harmonic Enhancement and Suppression (HES) technique. This system relied on an 

accurate estimate of the pitch of each speaker present.   A maximum likelihood pitch 



detector [30] was used to estimate the pitch of the stronger speaker. Morgan et. al. also 

proposed a maximum likelihood speaker assignment (MLSA) algorithm to label the 

recovered stronger and weaker signals as coming from either the target or the interfering 

speaker. Recent published results showed limited success [31]. 

New work in the area of co-channel speaker separation is being conducted at 

Rutgers University using energy separation techniques to estimate the amplitude and 

instantaneous frequency of each speech signal. Using a nonlinear differential operator 

they are looking to detect modulations in AM-FM signals by estimating the product of 

their time-varying amplitude and frequency [32]. 

1.1.2 Parameter Estimation 

Parameter estimation is one of the more crucial and difficult aspects of speaker 

separation. This is an area in which most techniques assume information is known prior 

to separation. In order to have a realistic and robust system, all parameters must be 

estimated solely from the co-channel speech signal. The parameters required for this 

research as well as for most other systems, include the voicing state of the speakers 

present, the pitch period of each speaker during phonation and the phase, amplitude and 

center frequency of the spectral harmonics for each speaker. 
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1.1.2.1 Voicing State Determination 

Voicing state determination is a process by which a segment of speech is 

classified as voiced speech, unvoiced speech or silence. A voiced sound is one in which 

phonation, the oscillation of the vocal cords, is present [33]. An example of the time 

waveform of a voiced speech segment is shown in Figure 1.1. Characteristics of a voiced 

speech include a periodic nature of the time waveform with relatively high energy. An 

unvoiced sound can be classified as a sound that is not voiced. An example of an 

unvoiced segment of speech is shown in Figure 1.2. Unvoiced speech is noise-like in 

nature with relatively low energy.    Silence is classified as the absence of speech 

altogether. 

For an uncorrupted speech signal, typical voicing state determination algorithms 

can be grouped into three different categories, simple threshold analysis algorithms, 

complex algorithms based on pattern recognition techniques and integrated algorithms 

which make both a voicing determination and pitch estimation simultaneously. Very few 

attempts have been made at voicing state determination on a co-channel speech signal. A 

pattern recognition technique was applied to co-channel speech to determine the number 

of speakers present in the co-channel speech with testing performed on speech segments 

from known subjects used in the training [26]. Techniques that attempt to estimate the 

pitch and voicing state simultaneously, it is incorrect to rely on the presence of pitch as a 

means of making a voicing determination. Pitch can only exist when the signal is voiced. 

However, it is incorrect to assume that a segment of speech is unvoiced simply because a 

pitch period does not exists or is not measurable. 
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Figure 1.1: Segment of voiced speech. 
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Figure 1.2: Segment of unvoiced speech. 
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Several articles have been written on the voiced classification of uncorrupted 

speech waveforms dating back to the 1960's in which the pitch period was used as a 

means of identifying whether the segment of speech was voiced. This technique was 

shown to be unreliable. Rabiner and Atal [34] used a classical statistical pattern 

recognition approach that made a three-class decision of telephone speech. Here the 

parameter set was narrowed down to five different measurements on the speech signal; 

zero-crossing rate, speech energy, the correlation between the adjacent speech samples, 

the first predictor coefficient from a 12-pole linear predictive coding (LPC) analysis and 

the total energy in the prediction residual. Later, Rabiner and Sambur [35] performed 

classification by nonlinearly combining an LPC distance measure and an energy distance 

measure to discriminate between the three classes. This technique demonstrated a low 

error rate for segments of speech confined to a single class. Siegel and Bessey [36] used 

a Bayesian classifier in a binary decision tree structure in which the speech segment was 

first classified as predominately voiced or unvoiced. The segment was then tested to 

determine if the excitation of the segment contained a mixture of voiced and unvoiced 

speech. The feature set included 14 distinct features similar to the ones used by Rabiner 

and Atal. 

In most co-channel speaker separation systems, researchers process only those 

frames in which the desired speaker is voiced. Zissman applied speaker identification 

techniques to determine the presence or absence of a particular speaker in a co-channel 

speech signal [26]. The technique was tested using two separate classifiers, a vector- 

quantizing classifier and a modified Gaussian classifier.   A codebook was created by 
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training a feature vector, 20 mel-frequency weighted cepstral coefficients, on the speech 

from the desired speaker, speech corrupted by an interfering speaker and on the 

interfering speech alone for a variety of SIRs. Both classifiers worked relatively well 

using supervised and unsupervised learning. 

Morgan et al. [31] attempted to classify each segment of the co-channel signal as 

either voiced or silence/unvoiced. Classification was performed by extracting five 

features from frames of speech and analyzing them using a multivariate Gaussian 

classifier. The classifier generates a binary voicing decision related to the presence or 

absence of voiced speech. This system only identifies the presence or absence of voiced 

speech, it does not identify the voicing state of each speaker. 

1.1.2.2 Pitch Estimation 

The pitch period or fundamental frequency of speech corrupted by another speech 

signal, based solely on the co-channel waveform, has been assumed known by most 

researchers. Pitch is a critical parameter from the standpoint that most of the systems 

attempt to process on the harmonics of the desired or interfering speaker. These 

harmonics are located near integer multiples of the pitch frequency. This requires an 

accurate estimate of the pitch frequency of one or both speakers. 

Woodsman et al [37] developed a two-speaker pitch estimation algorithm in 

which an accurate estimate of the pitch of the interfering speaker was obtained for SIRs 
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ranging from 0 to -9 dB.   However, independent testing by Zissman using synthetic 

vowels could not confirm his results [26]. 

Naylor and Porter [24] implemented a Modified Covariance (MCV) spectral 

estimator in which it was shown that the harmonics of both speakers were clearly evident 

the MCV spectra of a voiced/voiced co-channel speech signal. A clustering algorithm 

developed to extract the pitch estimates from the MCV spectra. Their preliminary 

testing demonstrated promising results. 

in 

was 

1.2 Simultaneous Adaptive Co-Channel Speaker Separation 

Our speaker separation system accurately performs five major functions in order 

to separate co-channel speech. First we classify the voicing state of each frame of co- 

channel speech. Second, we measure the pitch frequency within those frames in which 

one or both of the speakers are voiced. Third, we estimate the spectral harmonics for 

each speaker. Fourth, the co-channel speech segments are processed based on the voicing 

state of each speaker. Last, the speech segments are reconstructed in such a manner to 

form naturally sounding and intelligible speech. 

In this thesis, we have developed a voicing state determination algorithm. This 

algorithm classifies co-channel speech (on a frame-by-frame basis) as belonging to one of 

five classes. These classes include silence (both speakers are silent), unvoiced/unvoiced 

(both speakers are producing unvoiced sounds), voiced/unvoiced (desired speaker is 
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voiced, interfering speaker in unvoiced), unvoiced/voiced (desired speaker is unvoiced 

and interfering speaker is voiced) and voiced/voiced (both speakers are voiced). 

Voicing is defined as the presence or absence of phonation. Voiced speech is 

present during phonation, which occurs when the vocal cords are excited by a series of 

impulses, or bursts of air which resonate through the vocal tract. Voiced speech typically 

has high energy and is somewhat periodic and stationary in appearance. Unvoiced speech 

is the absence of phonation. This speech is typically represented by turbulent airflow past 

some constriction in the vocal tract. Unvoiced speech in appearance is typically of low 

energy and noise-like. Refer back to Figure 1.1 and Figure 1.2. The voiced/unvoiced 

determination problem is deciding whether the vocal cords are vibrating within a segment 

of speech. We can group sounds into three basic classes: 

1. Vocalic sounds are produced by exciting the vocal tract with quasi-periodic 

pulses of airflow caused by the opening and closing of the glottis. 

2. Fricative sounds are produced by forming a constriction somewhere in the 

vocal tract and forcing air through the constriction so that turbulence is 

created, thereby producing a noise like sound. 

3. Plosive sounds are produced by completely closing off the vocal tract, building 

up pressure behind the closure, and then abruptly releasing it. 

In this research, we are concerned with detecting the presence or absence of 

phonation of two speech signals that have been recorded onto a single channel. We have 

assumed a scenario in which the interfering speaker has an average signal strength that is 

equal to or stronger than the desired speaker.   These are signals in which the overall 
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average signal to interference ratio (SIR) is less than or equal to 0 dB. We define the 

SIR, in decibels, as 20 times the log of the ratio of the two-norm of desired speech signal 

to the two-norm of the interfering speech signal 

5//? = 20*/^VT^=TI (L1) 

This however may create a situation in which the unvoiced speech of the interfering 

speaker is at the same or at a higher energy level than the voiced speech of the desired 

speaker. Or during the onset or offset of voicing of the undesired speaker, an overlapping 

voiced sound from the desired speaker may be stronger than the undesired voiced sound. 

Herein lies the difficulty of identifying the voicing state of co-channel speech. 

The pitch frequency or fundamental frequency is the reciprocal of the vocal cord 

vibration period (fundamental period) due to the opening and closing of the vocal cords. 

Pitch can also be thought of as the repetition rate of the pulses in an excitation signal that 

produced voiced speech. See Figure 1.3. Males and females have different pitch ranges 

to which he or she is physically constrained. For males the possible pitch range is 

between 50 and 250 Hz while for females the range is somewhat higher, 120 to 500 Hz. 

There have been many techniques developed to estimate the pitch of a single speaker [41] 

but few have been developed to estimate the pitch of multiple speakers recorded over a 

single channel. 

17 



Our technique of joint pitch estimation is to first apply the maximum likelihood 

pitch estimation technique to a windowed co-channel speech segment. This will provide 

a pitch estimate of the stronger, voiced speaker. We then use this pitch estimate to 

suppress the dominate spectral harmonics of the stronger speaker. For co-channel speech 

that contains overlapping voiced speech, we process the residual signal resulting from the 

harmonic suppression to calculate the pitch of the weaker speaker. In situations when the 

two speakers are producing voiced speech, an estimate of the average pitch for each 

speaker is used to assign our pitch measurements to a particular speaker, otherwise the 

results from the voicing state determination algorithm assigns the pitch measurement. 

When the interfering signal and a desired signal are both speech signals, it is not 

always possible to apply conventional filtering techniques to separate the desired signal 

from the interfering signal. Long-term spectral characteristics of speech signals are 

typically not similar. Therefore, we must concentrate on exploiting those short-term 

spectral and temporal characteristics that allow us to separate the desired signal from the 

interfering signal. For speech synthesis it has been stated that "aural perception depends 

only on the amplitude spectrum of a sound and is independent of the phase angles of 

various frequency components contained in the spectrum" [38]. This is only true for 

reconstruction and synthesis. Here, we are dealing with the separation of overlapping 

speech signals. The phase of both signals becomes a crucial element in spectral 

estimation. 

Several scenarios can be present when a desired speech signal is corrupted by an 

interfering speech signal. For the case of the interfering signal having more signal energy 
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than the desired signal, both the voiced and unvoiced interfering signal may dominate the 

co-channel signal independent of the voicing state of the desired speech signal. 
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Figure 1.3: Pitch period defined in voiced speech segment. 

An interfering signal that is unvoiced will typically be a signal that has the major 

portion of its spectral energy concentrated at frequencies higher than a voiced signal. 

Removing the effects of the interfering signal can just be a matter of selecting the 

appropriate cut-off frequency of a low-pass filter to eliminate the major portion of the 
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interfering spectral characteristics. When both signals are unvoiced, intelligibility of a 

speech signal will not significantly be effected if the unvoiced speech segment is replaced 

with a noise-like signal. 

To remove the effects of an interfering voiced signal, we need to identify the 

center frequencies, magnitude and phase of the spectral harmonics of that signal. When 

the desired signal is also voiced, it may occur that the interfering spectral harmonics 

overlap the desired spectral harmonics. Any form of suppression could also eliminate the 

harmonics of the desired signal. Therefore, one must simultaneously estimate the 

waveform of both signals to preserve their true spectral characteristics. We have 

developed a constrained nonlinear least squared optimization algorithm to simultaneously 

estimate the spectral harmonics of both voiced speech segments. 

Reconstruction of the desired and interfering speech signals is accomplished using 

an overlap and add technique. With the use of a Hanning weighted window, the 

reconstructed speech segments are concatenated together to form intelligible and natural 

sounding speech. 

20 



2. DIGITAL SPEECH SIGNAL PROCESSING 

This chapter introduces the digital signal processing tools that are used in this research. 

These tools rely on the fact that although speech is a non-stationary process, the 

properties of a speech signal will change relatively slowly with time. Given this 

assumption, it becomes beneficial to break the data into short segments, called frames, 

which exhibit quasi-stationary properties. Each frame of data is then processed 

separately. Speech segments that are too long cause our assumption of stationarity to 

become invalid. However, segments that are too short in duration do not provide an 

accurate estimate of the spectral features. Previous work has shown that a time interval 

of 30 msec, is adequate to insure stationarity while still providing adequate spectral 

resolution. 

This chapter is broken into five sections. The first section deals with the system 

models used for speech production. The second section discusses Linear Predictive 

Coding (LPC) analysis which has become a crucial tool in the analysis of speech 

waveforms. The third section describes the short time characteristics of speech. The 

fourth section discusses constrained optimization and the last section discusses pattern 

recognition. 
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2.1 System Models 

2.1.1 Excitation and Modulation Model 

One of the most widely used models for speech production is the excitation and 

modulation model. As shown in Figure 2.1, the organs of the vocal tract, represented as a 

modulating filter are excited by a driving or excitation function. The vocal tract can be 

modeled as an acoustical tube. The driving function typically represents one of several 

different types of glottal excitation, including phonation, whispering, frication, 

compression, and vibration. The excitation acts as a carrier signal with the vocal tract 

filter modulating the acoustical information onto the excitation signal. 

Forced Air 
Excitation 

(Glottis) 
u(t) 

Modulation 
(Vocal Tract) 

Mt) 

Speech 

s(t) 

Figure 2.1: The excitation-modulation model of speech production. 

In the time domain, this model is represented as 

s(t) = u{t) ® w(t) (2.1) 
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where u{t) is the excitation signal, w(t) is the modulation function and s(t) is the speech 

signal which is a convolution of the excitation signal with the modulation signal. In the 

frequency domain (2.1) becomes 

S((0) = U((Q)W(<Q) (2-2) 

where now U(aJ), W(co) and S(co) represent the Fourier transform of the excitation signal, 

the modulation function and the speech signal respectively. 

The excitation signal or glottal waveform is typically represented as either a train 

of impulses, or as a white noise driving source, depending on the type of sound being 

produced. If we lump the different types of speech into one of three classes, voiced, 

unvoiced or silence, then for voiced speech the excitation signal would be a train of 

impulses, for unvoiced speech it would consist of white noise and for silence the 

excitation signal would be zero. 

Acoustically, we can think of this modulation as a means of filtering. The vocal 

tract is like any other acoustical tube in which there are natural frequencies which are a 

function of its shape. In speech, these natural frequencies are called formants which 

account for the primary way of modulating the excitation signal in the production of all 

the vowels and some of the consonants. 

2.1.2 Autoregressive Model 

Another method used to model speech production is to model the vocal tract as an 

autoregressive (AR) process or all-pole filter. The all-pole filter contributes to the short- 
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time spectral envelope of a speech spectrum. In general the short-time envelope of the 

speech signal includes contributions from both poles and zeros. However, if we increase 

the number of coefficients associated with this filter, an all-pole model can approximate 

the effect of both the poles and zeros on the spectrum. An AR filter can be written as 

p 

s[n] = -^as[n-i] (2.3) 
;=i 

Here the dependent variables[n] is written as a linear combination of the independent 

variables s[n-l] through s[n-p], where p is the order of the filter. The coefficients a. can 

be obtained as solutions to a set of/? linear equations. 

Using this model, the transfer function of the vocal tract filter can then be 

represented in the complex z-domain as 

W(z) = - -2  (2.4) 
l + c^z   +a2z   +---+apz~p 

2.1.3 Autoregressive Moving-Average Model 

The all-pole model of the vocal tract filter is a method widely used in speech 

processing. When the order of the filter is large, it can approximate the contributions of 

the zeros. However, the problem of modeling the vocal tract with a pole-zero model is a 

classical one in nonlinear estimation theory. Most methods are based on an iterative pre- 

filtering scheme which is just a linearization of the same nonlinear problem. The iterative 

pre-filtering method is a means of estimating the poles and zeros of the transfer function, 
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representing the vocal tract, simultaneously.  Other methods obtain the parameters of a 

pole predictor and those of the zero predictor separately [41]. 

The pole-zero modeling has been shown to be effective in representing nasal 

sounds and some consonants, as well as an effective method in spectral estimation of 

noisy speech. Here the speech signal is represented as 

p 4^ 
i'=l i'=0 

where the coefficients of the pole predictor are represented by the a, coefficients and the 

b, coefficients represents those of the zero predictor. The transfer function for this model 

of the vocal tract filter is given, in the complex z-domain as 

™ ^    b° + biZ-
x+b2z-2+- + bqz-q 

W(z) = ; — (2-6) 
1 + OjZ   +a2z   +---+apz 

p 

2.1.4 Sinusoidal Model 

Based on the assumption above, in which speech is modeled as a slowly-varying 

vocal tract filter with a quasi-periodic train of impulses or white noise driving source, a 

voiced speech waveform can be represented by a sum of sine waves with time-varying 

amplitude, frequency and phase terms. With this assumption, our speech signal, s[n] can 

be written as 

M 

s[n] = 2^[n\cos[dk[n\] (2-7) 
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where the time-varying amplitude and phase terms are denoted by ak[n] and 6k[n], 

respectively. The time varying frequency of each sine wave is given by the derivative of 

the phase, denoted by cok[n] = &'t[ri\. 

2.2      Linear Predictive Coding (LPC) Analysis 

Linear prediction is a method by which a signal can be represented as a linear 

combination of it past or future values along with the current value of the input. When 

only the past and current values of the input are considered the analysis is said to be a 

forward linear prediction. An analysis which considers only the future and current 

values of the signal is said to be a backward linear prediction. An analysis can also 

consider the past, future, and current values simultaneously to form a more accurate 

representation. This is referred to as a forward and backward prediction. 

2.2.1 Forward Prediction 

The forward linear prediction estimate is given by 

p 

sf[n] = -^a(s[n-i] (2.8) 
«=i 

where the af represent the forward linear prediction coefficients. The prediction is 

forward in the sense that the estimate at time index n is based on the p samples indexed 

earlier in time. The linear prediction error or residual signal is just the difference between 

the estimate and the true signal 
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ef[n] = s{n\-sf[n] (2.9) 

The solution for the optimal LPC coefficients can be calculated by minimizing the mean 

squared prediction error ef2[n] over the given time interval.    The coefficients are 

obtained by setting the partial derivative of ef2[n] with respect toa{ equal to zero. This 

leads to a set of linear equations of the form 

k    -   cJaO      \c0l] 
I   :     •-.     :   II  :   l = J   :   I (2.10) 

k. - cJkJ  UJ 
where cr =^s[n-i]s[n-j].   Since speech is quasi-stationary over short intervals of 

time, when we consider a different time interval we obtain a different set of coefficients. 

Several techniques have been developed to solve this set of linear equations. One 

widely used technique to obtain the solution to (2.10) is the maximum entropy method, or 

the autocorrelation method [41]. The advantage of this method is that the filter formed 

from these coefficients is a stable filter. 

When only a short segment of the data is available, the cv coefficients can be 

written as 

JV-1-|,_,| 

Cij=   5>[nM«+ *'-./] = #'-./I) (2-H) 

Substituting (2.11) into equation (2.10) and solving gives the autocorrelation solution of 

the predictor. This solution minimizes the variance of the prediction error over all time 

considered. This method is also called the data windowing method since it only requires 

the data within a particular segment or frame. 
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There are other methods which will solve this linear set of equations, such as the 

covariance method which windows the prediction error /[«]. In this case, N+p samples 

of the signal are needed. However, it will not guarantee a stable linear prediction filter. 

In speech analysis we are concerned with using the linear prediction filter to resynthesize 

the speech signal, therefore filter stability becomes a requirement that tends to favor the 

autocorrelation method. 

2.2.2 Backward Prediction 

The backward linear prediction estimate is given by 

p 

sb[n]=~YJai^n + i\ (2.12) 
1=1 

where the prediction is backward in the sense that the estimate at time index n is based on 

p samples indexed later in time. The backward linear prediction error or residual signal 

can be written as 

eb[n] = s[n-p]-sh[n-p] (2.13) 

where the error index is written with respect to n rather than n-p. This allows the forward 

and backward prediction errors to be functions of the same set of data samples that would 

be present in the linear prediction filter. 

Techniques for solving the coefficients of the backward linear prediction estimate 

are similar to those for the forward linear prediction estimate. However, given a finite 

segment  of data,  the  backward  linear prediction  coefficients  determined  by  the 
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autocorrelation   method   are   not,   in   general,   identical   to  the   forward  prediction 

coefficients. 

2.2.3 Forward and Backward Prediction 

Marple [41] provides us with the modified covariance (MCV) algorithm used to 

minimize the average linear prediction squared error in the forward and backward 

direction over a given segment of data. This results in a more accurate estimate of the 

autoregressive coefficients. The modified covariance method, however, does not 

guarantee a stable linear prediction filter. Therefore certain considerations must be made 

when it is used for purposes other than spectral estimation. Later, in the next chapter, we 

will see how this method can be applied to estimating the pitch frequency of multiple 

speakers from a co-channel signal and as a feature vector used to identify the voicing 

state of a speech segment. 

2.3 Short Time Characteristics of Speech 

As stated earlier, speech is a nonstationary process.   However, if we segment a 

' speech signal into windowed frames whose length is relatively short, the properties of the 

signal change only slightly during that interval of time. When the window length is too 

long, the signal properties may change significantly over the time interval. If the window 

length is too short, resolution of narrowband components may be sacrificed. This section 

29 



presents the benefits gained by segmenting the speech into frames to create data segments 

in which features and statistics become quasi-stationary over a given time interval. 

2.3.1 Windowing Analysis 

Segmentation of a sampled continuous function, such as a speech signal is 

accomplished by a method known as windowing. Windowing is a process of multiplying 

a signal by a window function w[n] of finite duration. This will truncate a speech signal 

into a finite duration segment called a frame. By delaying or advancing w[ri] we can 

examine any part of our speech signal. 

Two points must be considered when choosing a window function. First we must 

look at the tradeoff of bandwidth versus leakage suppression. Windowing tends to 

broaden impulses in the theoretical Fourier representation. Thus, exact frequencies are 

less sharply defined. Secondly, we must choose a windowing function which will be 

compatible with our overlap and add reconstruction processing used at the output of our 

system. Refer to Figure 2.2 and Figure 2.3 for the time and spectral representation of the 

several common window functions. 

A windowing function that works well for one application will not necessarily 

work well for another. The simplest window function is the rectangular window given by 

[1    \r\<N/2 

[0   otherwise 

where N is the frame length, or number of samples within that window. As the number of 

samples N increases, the width of the main lobe will decrease. However, the rectangular 
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window is not a good choice for the overlap-and-add reconstruction process.   It will 

introduce erroneous click sounds into a reconstructed speech signal. 

Another type of window function widely used in speech processing is the 

Hamming window. The Hamming window is defined as 

r.54- 0.46 cos(4nn/N)   H < N/2 
w[n\ = < n j       . Kz-l->) 

[ 0 otherwise 

which is similar in shape to the raised cosine pulse.   As can be seen in Figure 2.3, the 

main lobe of a Hamming window spectrum is wider than for the rectangular pulse, but 

has less energy in the side lobes.  However a drawback to the Hamming window is that 

the taper does not go to zero at either end of the window. 

The function which represents the Blackman window is defined as 

J0.42 -0.5cos(4m/N)+ 0.08cos(Snn/N)   M < N/2 
wM = j 0 otherwise 

The Blackman window is similar in shape to the Hamming window with a slightly 

sharper taper at either end of the window. Spectrally this will cause a slightly larger main 

lobe than the Hamming but with sidelobes which are distinctly lower. See Figure 2.3. 

The Hanning window is represented as 

rl    \.5-0.5cos(4m/N)   \n\<N/2 

[ 0 otherwise 

It has a relatively narrow main lobe (although it is slightly wider than the Hamming) and 

lower energy in the side lobes. In the time domain, the tails of the Hanning window go to 

zero which is an advantage, when applied to the overlap-and-add reconstruction process. 

It will be the window of choice in this research. 
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Figure 2.2: Common window functions. 
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Figure 2.3:    Comparison of the magnitude response for 512 sample length window 

functions: (a) rectangular, (b) Hamming, (c) Blackman, and 
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Frequency 
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Figure 2.3: Continued, (d) Hanning window function 

2.3.2 Filter Bank Analysis 

Filter bank analysis is one of the more popular techniques for spectral analysis, 

even more so with the introduction of wavelets to signal processing. Filter banks are a set 

of bandpass filters, each capable of analyzing a different range of frequencies of the input 

signal. It is more flexible than other analysis techniques in that the bandwidths can be 

varied according to the desired characteristics one needs to find, rather than being fixed 

for either wideband or narrowband analysis. 
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2.3.3 Discrete Fourier Transform Spectrum and Analysis 

The discrete Fourier transform (DFT) is widely used for finite duration sequences. 

The DFT is a sequence, as opposed to a function of a continuous variable, which 

corresponds to samples of the Fourier transform of a signal, equally spaced in frequency. 

The direct DFT and inverse DFT of a finite-length sequence s[n] of N samples 

are, respectively: 

n=0 

and 

'M^XflW* (2-19) 
■<* k=0 

where 

WN = exp(-^~) = cos(—) - j sin(—) (2.20) 

The sequence s[ri\, in (2.19) is represented as a sum of sinusoids of frequencies 

0,1,2,...,N-1.   Hence the DFT can be interpreted as a frequency analysis of the input 

signal. 

The number of samples chosen for the length of the DFT is inversely proportional 

to the frequency spacing. As the value of N is increased, we obtain higher frequency 

resolution but poorer time resolution because the signal properties, averaged over a 

longer time frame, may not be stationary. As the value of N is decreased, the frequency 

resolution will degrade but the time resolution will improve since the signal properties 

will now be averaged over a shorter interval of time. 
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The power spectral density (PSD) is defined as the discrete Fourier transform of 

the autocorrelation sequence or it can be represented as the square of the DFT of s[n] 

P(k) = S(k)S\k) (2.21) 

where P(k) is the PSD, S'(k) is the DFT of s[n] and S\k)k the complex conjugate of S(k). 

The short time spectrum of a signal can be thought of as the product of the 

spectral envelope, which changes slowly as a function of frequency and the spectral fine 

structure, which changes rapidly. A voiced speech signal will produce periodic patterns 

in the spectral fine structure. This is not the case for unvoiced speech. This periodic 

pattern corresponds to the periodicity of the sound source, produced by the excitation 

signal. The spectral envelope reflects the resonance and anti-resonance characteristics of 

the vocal tract. 

2.3.4 Short Time Autocorrelation 

The short-time autocorrelation function of a signal s[n] is defined as 

N-\-im\ 

R[m]=   ^s[n]s[n + m],       m=0,l,2,...^V-l (2.22) 

where N is the frame length. The autocorrelation function preserves the information 

about a signals harmonic and formant amplitudes as well as its periodicity, while ignoring 

phase information. The autocorrelation function is used for voiced/unvoiced state 

estimation, pitch detection, and linear prediction analysis. 
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2.3.5 Short Time Energy and Magnitude Measures 

The short time energy is defined as 

m=-~ m=-N/2 

The short time average magnitude is defined as 

N/2 

Mag= ^}s[m]w[m]=  2|s[m] (2-24) 

m=-N/2 

where N is the frame length. The energy measure emphasizes the high amplitudes while 

the magnitude measure avoids such emphasis. Both methods can be used to clip the 

speech signal for pitch estimation and separation by removing any low amplitude 

fluctuations. 

2.3.6 Cepstral Analysis 

The cepstrum is defined as the inverse Fourier transform of the short-time 

logarithmic power spectrum \S(k)\ of a speech signal s[h\: 

c[«]=DFrI/Og10([^)|) (2.25) 

The cepstrum is a powerful tool for spectral flattening. We can consider the spectrum of 

a speech signal as the product of the discrete Fourier transform of the glottal excitation 

G(k) and the transfer function of the vocal tract H(k). We have 

S(k)=G(k)H(k) (2.26) 

Then the cepstrum can be written as 
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c[n] = DFT'1 togl0(G(*l)+ DFT~' logw<\H(kj) (2.27) 

The  cepstrum  consist  of two  components;   a  slowly   varying   component  which 

corresponds to the spectrum envelope or the vocal tract filter response and a rapidly 

varying one which corresponds to the spectral fine structure or the pitch-harmonic peaks. 

Typically we look at the cepstrum of the DFT of a speech signal and the cepstrum of the 

LPC coefficients. The DFT cepstral coefficients are calculated from the DFT coefficients 

using 

1   N 
cn = —^lo$S(k]exp(j2nkn/N) (2.28) 

■** *=o 

The LPC cepstral coefficients are calculated from the LPC coefficients using 

c, = -a, 

-a - y (1 )a c        \<n<p 
cn = \       P

m      m (2.29) 

-Ji^—ZKCn-m P<n 

m=l 

where the a,, represent the LPC coefficients. 

2.3.7 Zero-crossing Measure 

The short time average zero-crossing rate is an efficient technique to aid in the 

determination of the voicing state of a segment of speech, to detect the periodicity of the 

sound source or to estimate the fundamental period. A zero crossing occurs whenever the 

signal waveform crosses the time axis.  The zero crossing rate is the number of times a 
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zero crossing occurs within a finite time duration. It can also be thought of as the number 

of times a sequence of discrete data changes sign. Formally defined, the short time zero 

crossing rate measure of an N-length interval of data is given by 

ZSH=T teMz^&lSbtm-«] (2.30) 
n=m-N/2 *■ 

where 

-«■»"ft  S<o 
and w[m-h] is the windowing function. 

2.3.8 Mel-Cepstrum 

The mel-cepstrum coefficients are cepstral coefficients calculated using a mel- 

frequency scaling. A block diagram of the method used to obtain the coefficients is 

shown in Figure 2.4. The input signal is windowed using a Hanning-weighted window 

function. A shallow high-pass filter is used for pre-emphasis. The log-magnitude 

spectrum of the signal is then compressed using a triangle weighting function. The center 

frequencies of the triangle weighting functions are spread across the spectrum such that 

both the center frequencies and the bandwidth increase with frequency. This spacing 

models the frequency sensitivity of a human auditory system, consistent with the mel- 

scale. The coefficients can be calculated using [54] 

K 

C„ 

k=l 

f l\lt~\ 
\cos n k- — — 

K 2)K\ 
• = Ji cos n\k - - - , n = 1,2,...,L, (2.32) 
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where Sk are the power coefficients calculated from the log-magnitude spectrum of the 

signal, K is the number of frequency bins and L is the desired length of the cepstrum. 

HANNING 
WINDOW HPF FFT LOGO •!) 

TRIANGLE 
FILTER 

INV COS 
XFORM 

Figure 2.4: Block diagram on the calculation of the mel-cepstrum coefficients. 

2.4 Constrained Optimization 

Optimization is the process of finding the best solution to a given problem. 

Typically this involves finding the maximum or minimum of an objective function of n 

variables, f(x,,...,xn) where n is an integer greater than zero. When some or all the 

variables of the objective function have restrictions or bounds, the optimization is said to 

be constrained. For general linear functions, subjected to linear equality constraints, 

optimization problems reduce to the form 

mm (2.33) 
/=! 

subject to the constraints 

n 

(i = l,...,m) 
J'=I 

(2.34) 
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where c and a., are constants or known data and the xj are the variables. The study of 

such problems of this form are known as linear programming. 

When we are dealing with nonlinear objective functions, optimal solutions 

become more difficult with local minima posing as erroneous solutions. For the general 

nonlinear programming problem of the form 

minimize F(x) 

g;(x)<fc,. (i = l,...,m) 
subject to x^Q (j = ln) U-*>) 

Second derivatives for general nonlinear objective functions are relatively difficult to 

obtain. At times it may be required that the first derivative (the gradient) must be 

perturbed in order to obtain reasonably accurate approximations of the second 

derivatives. Several methods, including the Gauss-Newton method and the Levenberg- 

Marquardt (LM) technique can be effective in determining the proper steps toward an 

optimal solution. 

2.5 Pattern Recognition 

Pattern recognition is a decision-making process. It is the formulation of a 

decision based on the classification of a set of measured features. Typical applications 

can be lumped into two categories, either classification of waveforms or classification of 

geometric figures. Here, we are dealing with the classification of a waveform, the 

waveform being a segment of speech. Decisions are made with the use of a continuous 
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pattern recognition system that extract a set of features or discriminants from a segment 

of speech. These discriminants will then be presented to a classifier that will then make a 

decision based on the type of speech present. 

Figure 2.5 shows an example of a generic pattern recognition system. Here, an n- 

dimensional sampled waveform is transformed to an m-dimensional feature waveform, 

where m « n. This feature vector is then passed through a classifier that makes a 

decision on the class in which the feature vector most closely matches. The training data 

set of feature vectors are used to train a classifier to distinguish between different classes. 

The training feature vectors are presented to the classifier along with the a priori 

knowledge that they belong to a particular class. This is how the classifier learns to make 

correct decisions. 

Sc" Measure 
Features 

ft Classification of 
Feature Set 

class. 

Figure 2.5: Generic pattern recognition system. 

The difficulty of a pattern recognition system arises in choosing the optimal 

features to describe a waveform and choosing the best classifier to discriminate between 

classes based on the feature set. The optimal classifier is chosen based on knowledge of 
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the class statistics of the feature vectors. We must study the underlying probability 

density functions of the feature vectors to find the proper discriminant function. Classical 

approaches to designing a pattern recognition system is the problem of estimating density 

functions in a multi-dimensional space and then dividing the space into regions of 

classes. 

The Bayes classifier is the best classifier to minimize the probability of 

classification error when the distributions of the feature vectors are known. However, 

depending on the density functions and the dimensionality of our feature vector, 

implementation of the Bayes classifier can become complex and may not be the most 

practical. Therefore, designers are often led to consider simpler, parametric and 

nonparametric classifiers. 

Parametric classifiers are based on assumed mathematical forms of either the 

density functions or the discriminant functions. Typically, the parameters that describe 

the density function, such as the mean and variance, are estimated from available 

samples. Given a finite number of samples, these parameters and consequently these 

classifiers, become random variables. The classification error also becomes a random 

variable and is biased with a variance. Therefore, the number of samples becomes 

important in the performance of the classifier and its design. An example of a parametric 

classifier is the quadratic classifier. 

When it is not possible to assume any parametric structure for the density 

functions, we must use nonparametric techniques. In nonparametric approaches, the 

density function is estimated from a given number of neighboring samples.   These 
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estimates, which are used in classification, are less reliable, with a larger bias and 

variance than the parametric estimates. Two examples of nonparametric techniques for 

classification are the k-nearest neighbor and Parzen window classifiers. An in-depth 

discussion of these approaches is provided in the next chapter 

44 



3. CO-CHANNEL SPEAKER SEPARATION 

In this chapter we develop a method to simultaneously separate two overlapping speech 

signals recorded onto a single channel. This process involves three different filtering 

techniques. Two of these techniques are traditional while the third is innovative and 

unique. We also present and develop a technique to predict the voicing state of each 

speaker present in the co-channel signal, a method to measure the pitch contour of two 

overlapping speech signals, and an algorithm to perform harmonic selection. 

The possible voicing state combinations of co-channel speech can be labeled as 

(desired speaker / interfering speaker): silence, voiced/voiced, voiced/unvoiced, 

unvoiced/voiced, and unvoiced/unvoiced. We have developed a novel approach to predict 

the voicing state of each speaker present in a co-channel signal. This technique is based 

on a pattern recognition approach. Features measured from the segments of co-channel 

speech are classified using a parametric classifier. A nonparametric classifier is also 

presented. 

For overlapping voiced segments of speech, we have developed a constrained 

nonlinear least squared optimization algorithm that simultaneously estimates the spectral 

characteristics of two voiced speech signals. The spectral characteristics include the 

amplitude, frequency and phase of the spectral harmonics of each speaker, based on a 

sinusoidal representation for voiced speech. Prior to optimization, the fundamental 

frequencies of these two overlapping segments are measured and then used to perform 
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harmonic selection. Harmonic selection is the process of identifying a speaker's spectral 

harmonics in a co-channel speech spectrum. 

The first section of this chapter presents our preliminary research into the study of 

the intelligibility of a speech signal and how it is affected by enhancement or suppression 

using an excitation-modulation speech model. This provides insight into the limitations 

of suppression and enhancement systems for co-channel speech and provides the 

motivation that directed us to a system that simultaneously estimates both signals. The 

remaining sections present the theory on constrained nonlinear least squared optimization 

applied to the separation of overlapping speech, development of a voicing state 

determination algorithm, joint pitch estimation algorithm, a harmonic selection algorithm 

and speech reconstruction. 

3.1 Preliminary Research 

Our investigation of preliminary speaker separation systems provided the 

motivation to develop a system that simultaneously estimates overlapping speech signals. 

Before presenting this material, it is important to first investigate how different 

processing techniques affect speech intelligibility. This provides insight into which parts 

of a speech signal are crucial to separation and intelligibility. Also it demonstrates the 

relative importance between the excitation signal and the spectral envelope and the need 

in a speaker separation to not only estimate the amplitude of the spectral harmonics of 

signal, but also the phase and center frequency. 
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3.1.1 Harmonie Enhancement 

Given an excitation-modulation speech model, similar to the one presented in 

Section 2.1, a speech signal can be deconvolved into two parts, an excitation or driving 

function and a vocal tract filter. The excitation function contains the spectral fine 

structure or harmonic characteristics of a speech signal. The vocal tract filter models the 

spectral envelope or modulation part of a speech signal. The excitation signal can be 

represented as white noise or as a train of impulses produced at a given repetition rate. 

This rate is the fundamental or pitch frequency. 

Hanson and Wong [10] outlined several scenarios using this model for speech. 

We have performed tests on these scenarios to gain greater insight into co-channel 

speech. These tests, outlined in Figure 3.1, consist of simultaneously separating out the 

excitation signal from the spectral envelope of the co-channel signal (s+i) and the 

excitation signal from the spectral envelope of the signal (s) alone. The signal (s) can be 

thought of as the desired speech signal and the interference (0 as the undesired or 

interfering speech signal. The spectral envelope for both inputs is modeled as an 

autoregressive (AR) process or all-pole filter using a forward linear prediction estimate. 

Using forward linear prediction coding, we can represent the estimate of an AR model as 

sf[n] = -^a(s[n-i] (3.1) 

The residual error signal then becomes 

ef[n] = s[n]-sf[n] (3.2) 
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Equation (3.2) represents the excitation signal to the all-pole LPC filter to produce 

speech. We can write a similar equation for the co-channel signal (sc) as 

p 

s![n] = -%alisc[n-i] (3.3) 
;=i 

where 

sc[n] = s[n]+i[n] (3.4) 

The residual error signal is given by 

efc¥\ = sc[n\-sfc[n] (3.5) 

Two outputs are produced at a signal to interference ratio (SIR) of -6 dB. The first 

output, sn is obtained by driving the LPC synthesis filter derived from s+i with the 

excitation signal of s: 

51=w/+.[«](g)e/[n] (3.6) 

where wf+l[n] is the impulse response of the co-channel vocal tract filter model. The 

second output, s2 is obtained by driving the LPC synthesis filter derived from s with the 

excitation signal of s+i.: 

s2=w{[n]®ef+i[n] (3.7) 

and similarly wf[n] is the impulse response of the signal's vocal tract filter model. 

Several speech signals were tested. An example of output signals s, and s2 are 

shown in Figure 3.2 and Figure 3.3 respectively. This example was produced from a 

mixture of male and female speech signals with different average pitch frequencies. The 

male speech was labeled as the signal and the female speech was selected as the 
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interference. Both output signals are compared to the original co-channel signal for 

improvement in intelligibility. 

s+i 

Figure 3.1: Block diagram showing the excitation of the signal's LPC synthesis filter 

with the co-channel excitations signal and excitation of the co-channel LPC synthesis 

filter with the signal's excitation signal. 

Results of tests using speech signals taken from the TEVIIT database are given 

below. It is well known that exciting the envelope of a speech signal with even random 

noise will produce "whispered" but intelligible speech (s,). However, it was found that 

when the desired excitation signal is used to excite the LPC synthesis filter derived from 
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the co-channel speech (s2), it provided a slight improvement in intelligibility over that of 

sr 

These results lead us to believe that improvement in intelligibility is possible 

when the spectral fine structure of a speech signal is accurately modeled and then used to 

enhance a corrupted estimate of the spectral envelop of the desired signal. Exciting the 

LPC synthesis filter of the co-channel speech with the driving function from the desired 

speech signal will enhance the spectral characteristics (phase and amplitude) of the 

desired speaker that are contained in the co-channel spectral envelope. However, we 

must also consider the effect this will have on the spectral characteristics of the 

interfering speaker's spectral components. 

In two separate tests both Perlmutter et al. [43] and Hanson and Wong [10] found 

that the intelligibility of co-channel speech using enhancement techniques had 

intelligibility scores which were consistently lower for the processed (enhanced) speech 

when compared to the unprocessed co-channel speech. This can be attributed to the fact 

that traditional methods that were used to enhance the desired speaker's spectral 

characteristics in the corrupted speech also enhanced adjacent harmonic components of 

the interfering speech signal. Since, in their test the signal power of the interfering 

speech signal was stronger than the desired speech signal, this method tends to produce 

even greater interference than if the co-channel signal was left unprocessed. Using 

simultaneous estimation of both signals, we will show that processing improves the 

intelligibility of both signals at varying SIRs. 
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Figure 3.2: Example of the effects of speech enhancement, (a) Plot of output s, 

(excitation of co-channel LPCs with signal's driving function) and (b) plot of original 

speech signal. 
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Figure 3.3: Example of the effects of speech enhancement: (a) plot of output s2 

(excitation of original LPCs with the co-channel driving function) and (b) plot of original 

speech signal. 
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3.1.2 Harmonic Suppression 

Harmonic suppression of co-channel speech is a process by which the position of 

the spectral harmonics of the interfering speech signal are estimated and then suppressed 

from the co-channel spectrum while the harmonics of the desired speech signal are left 

unprocessed. A well known method of performing harmonic suppression is the method 

of spectral magnitude subtraction. Here an estimate of the magnitude spectrum of the 

interfering signal is subtracted from the magnitude spectrum of the co-channel signal 

leaving an estimate of the magnitude spectrum of the desired signal. 

In cases in which speech has been corrupted by another speech signal, it has been 

shown that at low SIR, magnitude suppression is the preferred method [10]. Harmonic 

suppression works well for interference in which the spectrum of the interfering signal 

can be accurately estimated. The difficulty lies in estimating the magnitude spectrum of 

the interfering signal. For voiced speech, this requires precise knowledge of the shape, 

amplitude, and position of the interfering spectral harmonics. To test this premise we 

have assumed a priori knowledge of these interference characteristics to accurately test 

the performance of harmonic suppression for speech intelligibility. This provides an 

upper limit on performance. 

In the previous section, we investigated the merit of speech enhancement on 

speech intelligibility by exciting an LPC synthesis filter derived from the co-channel 

speech with the excitation signal of the desired speech. It was found that while this 

technique enhanced the spectral characteristics of the desired speech, in many cases it 
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also enhanced the spectral characteristics of the interfering speech, providing no 

improvement in intelligibility over the unprocessed co-channel speech. Here, we 

investigate suppressing the harmonics of the interfering speech, while still trying to 

preserve the spectrum of the desired speech using harmonic magnitude suppression. 

First, we must consider the limitations inherent to magnitude spectral suppression. 

Let us define S(k) as the discrete Fourier transform (DFT) of the desired speech signal 

s[n], I{k) as the DFT of the interfering speech signal i[n], and Sc(k) as the DFT of the co- 

channel speech sc[n]. From the definition of the Fourier transform, it can be clearly seen 

that when 

sc[n] = s[n]+i[n] (3.8) 

then 

Se(k) = S(k) + I(k). (3.9) 

These terms represent phasors, with a given magnitude and phase. An inherent 

assumption is that when signals are combined in the time domain, then the sum of the 

spectra are related in the magnitude spectrum domain. However, this is not the case with 

\S(k)+I(k]*\S(k)\+\l(kt (3.10) 

That is, the spectrum of the sum of two signals in the time domain is not equivalent to the 

sum of the spectra of each signal in the magnitude spectral domain. As can be seen in 

Figure 3.4, the magnitude spectrum of the sum of two signals may, and usually will be 

significantly different than the sum of the magnitude spectrum of the signals separately. 

The solid line plot in this figure shows the magnitude spectra of the co-channel speech 
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Signal when the signals are combined in the time domain. The dashed line plot is a result 

of when the magnitude spectra are combined in the frequency domain. 

Another drawback to magnitude suppression is that the phase of the signal is 

required for resynthesis. Most researchers have substituted the phase of the co-channel 

speech for the phase of the desired speech. However, the phase of the co-channel signal 

will more closely represent the phase of the stronger or interfering signal, not the desired, 

weaker signal. Given an understanding of these limitations, we can now test the 

effectiveness of magnitude suppression on reducing co-channel speech interference. We 

start with an ideal situation and work towards a more realistic scenario. 

The first test, an ideal case, is depicted in Figure 3.5 where we assume the 

magnitude spectrum of the interference is known completely. The interference and the 

co-channel speech signals are treated separately on a frame by frame basis. First, we 

calculate the magnitude spectrum of the interference and co-channel speech separately for 

each frame including voiced and unvoiced interference. Next, we subtract the magnitude 

spectrum of the interference from the magnitude spectrum of the co-channel signal. We 

then reconstruct the desired speech signal by taking the inverse DFT (IDFT) of this 

difference along with the phase of the co-channel speech. An example of the recovered 

speech signal, s shown in Figure 3.6 is compared to the original speech signal. The plot 

in Figure 3.6(a) is the recovered speech signal and the plot in Figure 3.6(b) is the original 

speech signal. 
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Figure 3.4:   Solid Line Plot - spectral magnitude of co-channel speech combined in the 

time domain. Dashed Line Plot - sum of individual magnitude spectra. 
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Figure 3.5: Spectral Magnitude Subtraction - ideal case. 

When the interference magnitude spectrum is known, spectral subtraction 

provides a very accurate estimate of the original signal. Informal listening clearly 

demonstrates that this type of harmonic suppression is an improvement over the harmonic 

enhancement method previously presented. However, this is an ideal situation, providing 

only the best case scenario. 

A slightly more realistic approach is depicted in Figure 3.7 with results in Figure 

3.8. Here we perform harmonic suppression using magnitude spectral subtraction only 

when the interfering speech signal is voiced and we employ a lowpass filter (LPF) with a 

cut-off frequency of 4 kHz when the interfering speech is unvoiced. Informal listening 

tests have shown that intelligibility of this method is very close to the level obtained by 

the previous method. This leads us to a significant conclusion that it is not necessary to 

57 



estimate the noise spectrum when the interference is unvoiced. A lowpass filter performs 

sufficient suppression of unvoiced interference on a voiced speech signal. However, we 

do need to have some way of knowing the voicing state of both the desired signal and the 

interference signal. 

An even more realistic approach to harmonic suppression, one which uses less a 

priori information is to estimate the pitch of the interfering signal and use this to estimate 

the locations of the harmonics of the voiced interference. Given these locations a comb 

filter, with uniform amplitude is implemented to suppress the harmonics of the 

interference. A more accurate spectrum would be to estimate the amplitude of each 

harmonic by sampling the co-channel spectra at the harmonic's center frequency [10]. 

Clearly this can only be as good, but no better than the ideal spectral suppression method 

described above. The limited success of these methods is mainly due to the difficulty in 

estimating the center frequency, amplitude and phase of each harmonic. 
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Figure 3.6: Results of Spectral Magnitude Subtraction when the magnitude spectrum of 

the interference is known and the phase of the co-channel speech is used: (a) the 

reconstructed speech signal, (b) the original speech signal. 
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Figure 3.7: Spectral Magnitude Subtraction with LPF - spectral magnitude subtraction is 

used for voiced interference and an LPF is applied when interference is unvoiced. 
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Figure 3.8:   Results from Spectral Magnitude Subtraction using an LPF for unvoiced 

interference: (a) reconstructed speech signal, and (b) original speech signal. 
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3.1.3 Current Research 

Our current research has advanced the work of our preliminary research, utilizing 

not one, but several processing methods, based on the voicing state of each speaker, to 

separate overlapping speech signals. Our method requires accurate estimates of the 

voicing state of the speakers present and accurate measurements of the pitch frequencies. 

With this information, our technique simultaneously separates the spectral characteristics 

of each speaker. 

Our system, outlined in Figure 3.9, provides the framework to successfully 

separate overlapping speech signals. Referring to Figure 3.9, the co-channel speech 

signal, sc = sD + s,, which is the sum of the desired and interfering speech signals, is 

broken into segments or frames 30 msec, in duration. Each frame is processed separately. 

A pre-processor extracts speech characteristics, Ft. This information is used to predict 

the voicing state of co-channel speech. Possible states for each speaker are voiced, 

unvoiced or silence. The predicted voicing state for each speaker is used to decide which 

separation technique is applied. Co-channel speech that is all unvoiced or silent is left 

unprocessed. 

Referring to the top branch of Figure 3.9, when the desired speech is unvoiced and 

the interfering speech is voiced, the co-channel speech signal is highpass filtered to 

remove the effects of the interfering speech signal. The residual signal is retained for 

reconstruction of the interfering signal. When the desired speech is voiced and the 

interfering speech is unvoiced, the co-channel speech is lowpass filtered to remove the 
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effects of the interfering speech. Again, the residual signal is retained for reconstruction 

of the interfering signal. Constrained nonlinear least squared optimization is used when 

both the desired and interfering speech signals are voiced. An estimate of the pitch 

frequency of the stronger speaker is used to suppress the harmonics of that speaker. The 

pitch frequency of the weaker signal is then estimated from this resulting signal. This 

pitch information is used to estimate the harmonics of both speakers which is then used to 

initialize the optimization routine. 

Following the constrained nonlinear least squared optimization branch, the co- 

channel speech signal is passed through a discrete Fourier transform. Initial values of the 

spectral harmonic peaks of both signals are estimated from this signal using estimates of 

the fundamental frequencies. These values are also used to provide constraints to the 

optimization variables. These variables include the amplitude, phase and center 

frequency of each spectral harmonic. A sequential quadratic programming algorithm 

adjusts these variables to their optimal values. This optimization routine minimizes the 

squared error between the original co-channel speech segment and the sinusoidal 

representation of the co-channel segment. Once a minimum has been reached and the 

desired and interfering speech segments have been found, an overlap and add technique is 

used to reconstruct the speech segments into intelligible speech signals. Segments of 

speech in which both speakers are silent or both speakers are unvoiced are left 

unprocessed. 
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3.2 Constrained Nonlinear Least Squared Optimization 

We have shown in Section 3.1.2 that with an accurate estimate of the magnitude 

spectrum of the interfering speech, spectral magnitude subtraction improves the 

intelligibility of speech in the presence of voiced interference. The major drawback to 

implementation of such a system is the need for an accurate estimate of the magnitude 

spectrum of the interfering signal. That is, we must have an accurate estimate of the 

center frequency, the spectral amplitude, phase, and the proper shape of each harmonic of 

the interfering spectrum. Here, we develop a method to simultaneously estimate the 

center frequency, amplitude and phase of all significant harmonics for both signals 

present in an overlapping voiced co-channel speech segment. 

The speech production system model can be represented as the output of a vocal 

tract filter excited by a train of impulses for voiced speech. Given this model, a voiced 

speech waveform can be represented as a sum of sine waves, each with a time-varying 

amplitude, frequency and phase. Our speech signal s[n]can be written as 

M 

k=\ 

where the amplitudes are denoted by a,[n] and the phase terms by Qk[n]. We can 

simplify the phase function by assuming the speech signal is stationary so that each sine 

function can accurately be represented by a fixed phase, 6k and a fixed amplitude ak in a 

given time interval [41]. Our representation is then written as 

M 

s[n] = ^akcos((i>kn + §k) (3.12) 
k=\ 
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where 

ek[n] = (okn + $k (3.13) 

and §k is the phase offset measured relative to the beginning of the segment of data (i.e. 

n=0). 

For our application, we sum the two speech segments, in the time domain, to 

produce the co-channel speech signal 

sc[n] = sa[n] + sM (3.14) 

where 

*aM=Sfl*coKö>a*"+0 (3-15) 

Mb 
SM = X fe* cos(a>bkn + <$>bk) (3.16) 

*=i 

Again, we have assumed a fixed frequency and amplitude within a given time interval. 

This is equivalent to the  assumption the signal exhibits  quasi-stationary spectral 

properties throughout the length of the speech segment. Physically, this implies that the 

vocal cords and vocal tract characteristics are fixed during our time interval. 

We can substitute (3.15) and (3.16) into (3.14) to give 

M„ M, 

S 
t,  —       — 

k=\ k=\ 
[n] = 2>* cos((dakn + 0+2A cos(Gibkn + ^bJC) (3.17) 

or 

M=Ma + Mb 

sc[n]=    X^^C^rc + ^c,*) (3.18) 
k=\ 

Using vector notation, we can simplify (3.18) by rewriting as 
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where 

= \cT
lCos(x2n

T + x3l
T)\ (3-19) 

M       r©.i       Ki      m      m 
|c2 I IcoJ U2I l2| 111 

*i = l   :   I        ** = l   :   I        *3=|   :   I        n = \ :|        / = h| 

U,.L     [©«-L     UJ„X1    LHxi    Wtoi 

Given our co-channel speech data segment s, we must select the proper X, where 

* = [*,;*,; x,] (3.20) 

such that we minimize the two-norm of the residual vector 

r = sc-s (3.21) 

Thus the function to be minimized becomes the squared error between our model (3.19) 

and the windowed co-channel speech data s. More formally, our problem statement 

becomes: 

Find the proper X to solve: 

minF(X) = -[sc-sJwT[sc-s] (3.22) 

where the matrix W is a positive definite diagonal weighting matrix with the diagonal 

elements equal to coefficients of our window function 

[w[-(N-l)/2] 0 0 •••        1 
| o w[l-(N-l)/2]   0 - I 

w=\       o o ••.        o (3-23) 

[      ; : o  w[(w-i)/2l| 

Since W is a matrix with constant values, the proper X that minimizes the residual vector 

in (3.21) also minimizes the function F(X) defined in (3.22). 
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Let us consider a nonlinear function of the form 

f(X,n) = xt, cos(x2in + x31)+ xn cos(x22n + x32)+... + xm cos(x2Mn + x3M) (3.24) 

or 

where 

f(X,n) = f1(x1,n)+ f2(x2,n)+... + fM(xM,n) (3.25) 

/. (x., n) = xXj cos(x2n + x,.) (3.26) 

and 

The elements of x. represent the amplitude, frequency and phase of the jth sinusoidal 

component of f(X,h). Equation (3.24) is our nonlinear function, which is our 

mathematical representation of overlapping voiced co-channel speech. We want to match 

this representation to our measured discrete data set, s = (s, s2... sN)T at each discrete time 

"r 

fl(x1,ni) + f2(x2,ni) + ... + fM(xM,nl) = sl 

fl(x1,n2) + f2(x2,n2) + ... + fM(xM,n2) = s 
(3.28) 

fl(x1,nN) + f2(x2,nN) + ... + fM(xM,nN) = sN 

This is an over-determined and consequently inconsistent set of equations where N > M 

and iV > 3M. N represents the number of samples in our data segment. 

We can define A as our nonlinear function 

A = [A,    A2    •••   AN1[ (3.29) 
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M 

where 

A^Xjfo'»*)»      fork = ltoN (3.30) 

Using our nonlinear function, we can express the weighted residual error vector 

as 

rw = WI/2(A-s)=W1/2r (3.31) 

where the weighting matrix Wm is defined to be 

tyw[-(N-l)/2] 0 0 ••• "j 

I 0 Jw[l-{N-l)/2\    0 - , (332) 

0 0 0 | 
L        ; ; o JW[(N-i)/2]\ 

Each element in rw represents the weighted residual error at each discrete time between 

our model and the measured data. 

The function to be minimized is the nonlinear least squared objective function, 

FJX,ri) which is defined to be the two-norm of the weighted residual error 

Fw(X,n) = Wrw=
1

2lirw\j (3.33) 
*=i 

The kth row of the weighted residual error is the kth element of the summation in (3.33) 

given by 

(a=v^{/«+/«+-+/«-**}    for k=uoN    <3-34) 

with the weighting matrix defined as W1/2 = diag{jw[   Jw^   ■ • ■   jwk    ■ ■ ■   V^v )• 

The matrix X* which causes FW(X) to be a minimum must simultaneously solve 

the gradients to zero [47] 
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VV =Sfe)*(V/yfc)J    ->=1 toMand/=l to 3 (3.35) 
*=i 

or 

^=V,.FW(X)=0 (3.36) 

g2=V2jFw(x*)=0 (3.37) 

ft = V3^(y*)=0 (3-38) 

fory = 1 to M, while also ensuring that the Hessian of the function FJX), defined as 

H = V(VF(X))T = V2F(X) (3.39) 

is positive definite at our solution matrix X". 

The first partial derivative of the kth residual error with respect to x,. is 

M 

V,(r)t = V,/„ + V,/,2 +... + V,/^ = £V,4 (3.40) 
9=1 

where A: will vary between 1 and N, j will vary from 1 to M and I will vary from 1 to 3. 

We can now define the Jacobian matrix as a matrix of the first partial derivatives of the 

residual error vector, 

/ = [V/, (r)k ]  for rows 1 to JV and columns 1 to 3M. (3.41) 

Rewriting (3.41) as a weighted Jacobian matrix we have 

Jw = ft,j(rw)k]=W/2J (3.42) 

Written out, the Jacobian is 
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rv„(rw) V,^), V13(rw) - VM,(rw) V Ml(rw\ VM3(rw)l 
_|V11(^)2 V12(r,)2 V13(02 - Vm(rw\ V m(rw\ VM3(02        (343) w ~ I       •                :                 • :            : :                 : 

ynirw)N V12(v)w V13(rw)w - Vm(rw)„ VM2(
rw)N VM3(

r
W)N Nx3M 

The Jacobian simplifies the expression in (3.35) to 

VF  _„   _ fr (3.44) 

To find the minimum of our multidimensional objective function Fw(X,n),wc 

must find the X' such that gradient of the objective function is equal to zero and the 

Hessian of our function is positive-definite at the point. The Hessian matrix H is 

composed of all second derivatives of F(X). This can be written as 

tfw = V(VFj=VX (3-45) 

whereV2FW is a matrix of second partial derivatives of F. We can substitute (3.35) into 

(3.45) to obtain 

«»=v[|(av(af 0.46) 

Simplifying (3.46) we obtain 

fl„=i>{a(v(<v)j] (347) 
k=\        *- 

k=l 

Hw = /!/„ + Mw (3-49) 

where Mw is an 3Mx3M matrix of the weighted residuals and their second derivatives 

defined to be 
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Mw =yL(rw)X(rw\ (3.50) 
*=i 

When the residuals approach zero, near a solution X\ then equation (3.49) can be 

approximated by the first term J„JW, since the second term Mw is close to zero when the 

(rw\ are close to zero [49]. If this situation occurs, then (3.49) can be rewritten as 

HW = JT
WJW (3.51) 

which is equivalent to assuming that the residuals in (3.31) are linear. 

We have developed the proper relationships for our model to accurately estimate 

our measured data ensuring the least squared error. The optimal solution X* is obtained 

when it forces (3.44) to zero while maintaining (3.49) to be positive-definite. We now 

present an iterative technique to obtaining the nonlinear least squared error. 

Let us begin by first recalling that an infinite Taylor series expansion about a 

particular point x0 is given by [50] 

f(dx) = f(x0)+f'(x0)dx+ (ji)f"(x0)dx2 + (i)f>"(x0)dx3
+... (3.52) 

where dx represent the distance or displacement from our expansion point x0 

dx=(x-x0) (3.53) 

From (3.52) we can write the multivariable Taylor series expansion for a function about a 

vector p as 

F(dx)=F(p)+g(p)Tdx + 12dxTH(p)dx + ... (3.54) 

where the multidimensional displacement vector dx is given as 

dx = (x- p)=(dxl    dx2    ••■   dxM) (3.55) 
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The gradient vector of F(X) evaluated at p is g(p) and the Hessian matrix of 

partial derivatives evaluated at p is Hip). We can approximate our multidimensional 

nonlinear objective function as a quadratic function (of the same dimension) using the 

Taylor series expansion given in (3.54). If F(X) quadratic, then 

VF(dx) = v(F(p)+ gipfdx +idxTH(p)dx) (3.56) 

or 

VF(dx) = g(p)+H(p)dx (3-57) 

The proper step (magnitude and direction) that must be taken to obtain the 

minimum would be the dx that solves VF(dx) = 0 from any point p on a quadratic 

surface is 

dx^-HipT'gip) (3-58) 

This is known as the Newton step in the Newton-Raphson search procedure with x = p + 

dx' called the Newton point [47]. The convergence of x to x' such that (3.57) is zero 

becomes an iterative procedure. If the initial guess of the starting point in estimating the 

solution to our nonlinear objective function is close to the correct solution, then our 

Taylor series approximation, given in equation (3.56), will represent the function 

reasonably well and convergence to a solution is expected. 

Referring back to our nonlinear least squared error objective function, the search 

direction to obtain a solution vector lC that minimizes (3.33) is given by (3.58). Since 

(3.33) is not quadratic, we can estimate it as a quadratic using the Taylor series expansion 

given in (3.54). Then a minimum solution is obtained by performing a sequence of steps 
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in the magnitude and direction given by (3.58), calculating the gradient and estimating 

the Hessian at each step. Substituting (3.49) into (3.58) we obtain our Newton step as 

dX = ~{jT
wJw + MwJ

l J\ (3.59) 

We can rewrite (3.59) in terms of the residual error vector and the weighting 

matrix by substituting (3.31) and (3.42) into (3.59) and assuming the residual error 

vectors are linear (M = 0), we then have 

dX = -(jTWj)'jTWr (3.60) 

Back to our problem of separating overlapping voiced speech, we can replace our 

nonlinear function in (3.24) with our co-channel voiced speech model in (3.19). The 

solution to (3.22) then becomes an iterative process of calculating the gradient of the 

nonlinear least squared objective function defined in (3.22) using equation (3.35) and 

estimating the Hessian in (3.50) at each iterative step based on the direction and 

magnitude of (3.60). 

The search for a solution vector X* can be obtained with less error and with less 

iteration when we impose restrictions on the unknown variables. The method of 

establishing upper and lower bounds on some or all the variables in X is referred to as a 

box constraint. Less iteration will be required because the constraint imposes limitations 

on the step size and appropriate regions for convergence. This also allows us to express 

the Hessian using (3.51). The box constraint can be represented as a vector defining the 

upper bound, XUB and a vector defining the lower bound X^ such that we impose X to be 

restricted to the region bounded by these vectors. Formally our constraint becomes: 
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Constraint: The solution vector X must lie in the region 

XLB<r<XVB (3-61) 

3.3      Adaptive Filtering (V/UV, UV/V, and UV/UV) 

We have just developed a technique to separate two overlapping voiced speech 

signals. Referring to Figure 3.9, our next step is to separate voiced speech from unvoiced 

speech and overlapping unvoiced speech. Separating overlapping speech signals in 

which one signal is voiced and the other is unvoiced can be a difficult problem due to the 

lack of a parametric model for mixed speech, such as the sinusoidal model that exists for 

overlapping voiced speech. 

Two examples of unvoiced sounds are a fricative and a plosive. Examples of 

these two speech sounds are given in Figure 3.10 and Figure 3.11 respectively. A 

frication is the result of air flowing past a constriction in the vocal tract, which generates 

a broadband noise sound. A plosive or stop is the result of a sudden release of air 

pressure that has been built up from a closure in the vocal tract. 

In Figure 3.10, it can be seen that for most types of unvoiced speech sounds (such 

as fricatives) a major portion of their energy is concentrated at higher frequencies (above 

4 kHz). We have implemented a lowpass to separate an interfering unvoiced signal from 

the desired voiced signal. 
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Figure 3.10:    Representation of a Fricative, (a) time waveform and (b) magnitude 

spectrum. 
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Figure 3.11: Representation of a Plosive, (a) time waveform and (b) magnitude spectrum. 
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When an interfering signal is voiced and the desired signal is unvoiced the energy 

of the interfering signal is concentrated at lower frequencies and the energy of the desired 

signal is concentrated at the higher frequencies. We have implemented a highpass filter 

to separate the voiced interference signal from the unvoiced desired signal. 

Referring back to the tests we conducted in Section 3.1, it was found that the 

intelligibility of speech, using a lowpass/highpass filter to separate overlapping voiced 

speech sounds from unvoiced speech sounds, is high. 

Cherry and Wiley [45] reported that speech from which non-vocalic (unvoiced) 

sounds had been gated out and removed, regained their intelligibility significantly when 

wideband noise was inserted in those intervals. Apparently, the brain will accept any 

suitably placed noise burst as the required sound. Parsons [3] also noted that when only 

the periodic portions of speech are played back, the intelligibility of the speech is still 

clear and realistic. Therefore it is necessary to only attenuate overlapping unvoiced co- 

channel speech segments (unvoiced/unvoiced), consistent with the energy level in the 

reconstructed speech signal. 

A concern, stated in Chapter 2 was the assumption that the speech signals must be 

stationary during the windowed interval. This may not always be the case. We have 

implemented a discriminant to estimate nonstationarity within a given windowed segment 

of speech. This discriminant is the ratio of the short-time energy measure in the first half 

of the segment to the short-time energy measure in the second half of the segment, 

defined in equation (2.23). When this threshold is exceeded, the window length is halved 
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and processing is conducted on a time interval half the original interval time. This is a 

rather simple, but effective approach to insuring stationarity during the analysis interval. 

3.4 Voicing State Determination 

In this section, we present a voicing state determination algorithm (VSDA) to 

estimate the voicing state of a segment of co-channel speech. Voicing state determination 

is a method of classifying the voicing state of the speakers present in a segment of co- 

channel speech. This process is required in a co-channel speaker separation system as a 

means to select an appropriate separation processing technique. The possible voicing 

state classifications are: 

1. Silence (S) - both speakers are silent; 

2. Voiced/Voiced (V/V) - both speakers are producing voiced sounds; 

3. Voiced/Unvoiced (V/UV) - the desired speaker is producing voiced sounds 

while the interfering speaker is producing unvoiced sounds; 

4. Unvoiced/Voiced (UV/V) - the desired speaker is producing unvoiced sounds 

and the interfering speaker is producing voiced sounds; 

5. Unvoiced/Unvoiced (UV/UV) - both speakers are producing unvoiced sounds. 

Classifying co-channel speech requires simultaneously estimating the voicing 

state of each speaker present within the segment. We have assumed the silent state as a 

subset of the unvoiced class (except when both speakers are silent) thereby limiting 
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classification of co-channel speech to mixtures of voiced and unvoiced speech and total 

silence. 

In this work we have developed a technique using three different classifiers to 

perform voicing state determination based on decision theory. Our detector can be 

modeled as a black box with a set of inputs and a set of outputs. The box operates in both 

a training mode and a detection mode. In training mode, the detector is presented with 

co-channel speech data segments from which it then creates a reference associated with 

the five classes defined above. Once training is complete, the detector operates in a 

recognition mode in which it is presented with an unknown set of data. The detector is 

then tasked to identify which of the five possible voicing classes should be assigned to 

the data. The detector is evaluated based on its ability to correctly classify unknown co- 

channel speech segments. A Bayesian classifier, a k-nearest neighbor classifier, and a 

Parzen window classifier are developed below. Each classifier used the same decision 

structure and the same feature set to classify speech. 

3.4.1 Decision Structure 

Voicing state determination of co-channel speech requires discrimination between 

five classes or categories of speech. There are several ways in which an R-category (R = 

5 case) classification can be structured. Classification can be obtained using a single 

classifier that assigns the pattern to one of R classes, or through a sequence of binary 

decisions. We have chosen the binary decision tree approach to classification. 
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(Desired/Interference) 

Speech Present Silence 

Voiced Speech Present Unvoiced Speech Present 
(Unvoiced/Unvoiced) 

Voiced/Voiced Mixed Voiced 

Voiced/Unvoiced Unvoiced/Voiced 

Figure 3.12: Voicing state decision tree for co-channel speech. 

Our binary decision tree structure is shown Figure 3.12. Decisions are made 

independently, on a frame-by-frame basis. The first decision is to decide on the presence 

or absence of speech in the given speech segment. If the decision is made that no speech 

is present, then the segment is labeled as silence. If speech is present, we move down the 

decision tree to the next level. Here a decision must be made on the presence of any 

voiced speech or the presence of strictly unvoiced speech.   If only unvoiced speech is 
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present, the segment of speech is labeled as unvoiced/unvoiced. If voiced speech is 

present, we proceed down the decision tree to decide if both speech segments contain 

voiced speech or if one sound is voiced and the other is unvoiced. If both speech sounds 

are voiced, we label the speech as voiced/voiced. If the speech segment is mixture of 

voiced and unvoiced speech, we continue down to the last branch to decide which speaker 

is voiced and which is unvoiced. Here the speech is labeled as voiced/unvoiced or 

unvoiced/voiced. Determination as to the presence or absence of voicing is used as a 

means to select the appropriate separation processing technique. 

3.4.2 Features 

The selection of a set of features that will provide adequate classification of co- 

channel speech must be more sophisticated than those used for voicing state classification 

of uncorrupted speech. The set of features chosen must not only discriminate between 

classes of voiced and unvoiced speech, but it must also discriminate between mixed 

excitation of two speakers. That is, the feature set must successfully discriminate 

between the sum of two voiced segments of speech from the sum of a voiced and 

unvoiced speech segment. The feature set must also discriminate between mixed 

excitation between two different speakers. The features we have chosen are: 

1. Log of the short time energy of the signal (STE); 

2. Normalized fundamental frequency (PIT); 

3. Normalized autocorrelation coefficient at unit sample delay (MAXAC); 
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4. Normalized zero crossing rate (ZCR); 

5. Ratio of energy in the signal above 4 kHz to energy below 4 kHz (HILO); 

6. 16 mel-cepstral coefficients (MELCEP); 

7. 15 modified covariance coefficients, excluding the first coefficient (MCV). 

The features considered here are chosen not only for their ability to discriminate 

between voiced, unvoiced and mixed speech, but also to differentiate between speakers. 

The first four features are a subset of the traditional voicing state determination systems. 

The last two features in the set are unique to our application in the discrimination of 

voiced/voiced speech from mixed voiced speech and in discriminating mixed voiced 

speech between speakers. 

The STE of the speech signal is calculated using equation (2.23). The PIT feature 

is measured based on the technique presented in Section 3.5. The value of MAXAC is 

taken as the ratio of the maximum value over the difference between the maximum and 

minimum value of equation (2.22). The ZCR is the total number of zero crossings as 

defined in equation (2.30). The value of HILO is dependent on the spectral 

characteristics of the speech segment. The speech segment is low-passed filtered with a 

cut-off of 4 kHz and equation (2.23) is used to calculate the energy. The speech segment 

is then high-passed filtered with a cut-off of 4 kHz and again equation (2.23) is used to 

calculate the energy. The value of HILO is the ratio of these two values. The Mel- 

cepstral coefficients are calculated using equation (2.32). The number of frequency bins 

corresponds to a center frequency spacing of 150 mels. The 16 mel-frequency weighted 

cepstral coefficients does not include the zero'th order coefficient.   An algorithm for 
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calculating the modified covariance coefficients can be found in Marple [41]. Here we 

have chosen the MCV coefficients immediately following, but not including the zero'th 

order coefficient. 

3.4.3 Training Data 

In this research we are developing a pattern recognition approach for deciding 

voicing state of speech based on measured features from the co-channel speech signal. 

Our classifier is trained to recognize patterns of speech through supervised learning. 

Training is performed on the uncorrupted speech of each speaker in the co-channel signal. 

We have conducted training using the TIMIT database. A more detailed description of 

our data can be found in Chapter 4. The TIMIT database contains clean English spoken 

speech sampled at 16 kHz. The database is segmented into eight distinct dialect regions 

of the United States. These regions include New England, Northern USA, North Midland 

USA, South Midland USA, Southern USA, New York City, Western USA and Army 

Brat (an individual who has moved around). We have performed training and testing on 

Northern USA speakers. 

The TIMIT database provides a hand labeled phonetic transcription of each 

sentence within the database. Logically, this would appear to be the most accurate way to 

segment the speech. However, since a typical phone will transverse across several 

frames, and a phone could contain both voiced and unvoiced speech, we have developed 

our own segmentation and labeling system for training. This will also aid in training and 
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testing using the RPI_COC speech database, which is unlabeled data.   The features, 

described above, are extracted from the labeled data and used to train the classifier. 

The technique used to segment uncorrupted speech for training our classifier is 

shown in Figure 3.13. The short time energy, defined in (2.23) along with the zero 

crossing rate (2.30) are two features that have proven to be effective in making a 

voiced/unvoiced classification of uncorrupted speech [34]. 
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Figure 3.13: Voiced/Unvoiced segmentation of uncorrupted speech. 

We define the energy threshold as 

(  1      M 

£\ tIJ =-6 *min thrshld 

1      M \ ^Xio*to«te)J (3.62) 

where £,. is the short time energy measure per frame and M is the total number of frames 

within the length of the co-channel speech signal. The energy threshold is used to 

determine periods of silence. 
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The threshold for zero-crossing rate (ZCR) is predetermined based on the 

sampling rate and the frame size used in the windowing routine. The threshold for the 

ZCR is given by [40] 

2480 
ZCRThrMd=—*N (3.63) 

Js 

where fs is the sampling rate and N is the number of samples per frame. When the ZCR is 

greater than the given threshold and the energy is greater than the threshold, the segment 

of speech is labeled as unvoiced. If the ZCR is less than or equal to the threshold and the 

energy is greater than the threshold, the speech segment is labeled as voiced. Otherwise 

the energy within the speech segment is below the threshold and the speech is labeled 

silence. 

3.4.4 Bayesian Classifier 

Based on the decision structure presented above, our problem of identifying the 

voicing states of speech segments becomes a sequential series of decisions between two 

classes. Therefore, in the following sections, we treat the classification of speech as a 

two-class problem. In our two-class problem, hypothesis H0 is true when X belongs to 

class 0 and hypothesis Hj is true when X belongs to class 1. 

The Bayes decision rule for minimum error, on a two-class problem is; given an 

observation vector.*, the classifier decides hypothesis H0 if the probability of H0 is greater 

than the probability of Hr Otherwise, the decision is Hr This can be written as a 

likelihood ratio test [51] 
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£(X).P(
X/H

>)>LL (3.64) 

Ho 

where the P, is the a priori probability of hypothesis H,, and p{x/H.) is the conditional 

p 
density function.   The term -* becomes the threshold value of the likelihood ratio 

decision. We assume there is no cost associated with a correct decision and the costs 

associated with a wrong decision are equal. 

To achieve minimum error rate classification under the Bayes decision rule, we 

must chose our classification such that it minimizes the conditional risk. Thus, we must 

decide the hypothesis that maximizes the a posteriori probability p(H,/x). The 

hypothesis with the largest a posteriori probability insures a minimum error rate. 

The form of the classifier is dependent on the conditional density functions 

p(x/H,). The likelihood ratio takes on an analytically attractive form when the density 

functions are multivariate normal. A multivariate normal density function is defined as 

*»w4i(,-rfl"(i-ri!      (365) 

where flis the «-component mean vector and I is the n-by-n covariance matrix. 

Unfortunately, our n-dimensional vector is not multivariate normal. However, we can 

form a linear combination of the components of x that will project this n-dimensional 

vector onto a line. We can write this projection as 

y = w'x (3-66) 
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where y is a linear sum of the elements of x. If this transformation is chosen properly, we 

can project these vectors in such a manner that the samples are well separated. 

To insure that the samples are well separated, the distance between the means of 

the projected samples must be large while maintaining the variances of these projected 

samples to be small. The Fisher linear discriminant [52] is a linear function w defined in 

equation (3.66) such that the criterion function 

I -      - I2 
, .     \m. -m\ 

m=    '       2 (3.67) 
Sl+S2 

is maximum, where m. is the sample mean of the projected points for class /, and ä. is 

the scatter of the projected samples for class /. Then w is given by 

w = Sty {ml -m2) (3.68) 

where m. is the n-dimensional sample mean of the points for class i, and Sw is the within- 

class scatter matrix 

SW=S1+S2 (3.69) 

with 

S^^ix-mXx-mJ (3.70) 
xeR, 

If the elements of x are mutually independent, the dimension of x is large and the 

wXj satisfies the Lindeberg conditions, then from the central limit theorem, y can be 

taken to be a normal random variable. The Lindeberg condition states that the individual 

variances ck, for k = l,...,n must be small compared to the sum of all the variances, 
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£o?.    The assumption that y is a normal random variable provides an optimum 
i=i 

partitioning of the real line into two decision regions. 

Referring back to equation (3.64), we must now develop a classifier based on the 

statistical characteristics of our sampled data. We can view the likelihood ratio test in 

(3.64) in terms of a set of discriminant functions g.(x) for each hypothesis or class. Our 

classifier assigns an observation x to the class with the largest discriminant. For the 

minimum error rate, our discriminant functions becomes 

gt(x)= p(p,/x) (3-71) 

such that the maximum discriminant function is the maximum a posteriori probability. 

Using the Bayes rule, we can rewrite (3.68) as 

g,(x)= pfr/H^H,) (3-72) 

By taking the logarithm of both sides, the classification will not change since the 

logarithm is a monotonically increasing function. Then (3.72) becomes 

g,(*) = hgpQc/H,)+ logP{H) (3-73) 

By substituting equation (3.65) into (3.73), we can express our discriminant function as 

g,(x)= -\(x-^Ji::1 (x-^-^108(2^-110^ +logP^)  (3.74) 

This expression can be further simplified by applying the linear transformation obtained 

from (3.68) in which the multivariate normal density function is transformed to a 

univariate normal density function provided the conditions of the central limit theorem 
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hold. Assuming that the variances for each class are not equal, then (3.74) can be written 

as 

8i(y)= -^G-m,)'(T:1(y-m,.)-^/0g(|(T,.|)+/0gP(^) (3.75) 

ft 
The constant term —log(2n) term has been dropped since it is independent of the voicing 

state of the signal. The discriminant functions are quadratic and the decision regions lie 

along a straight line. 

This procedure is not optimal. Projection of an n-dimensional vector onto a real 

line can not reduce the minimum achievable error rate. We are throwing away 

information that may aid in the classification. Also, while the assumption that y is a 

normal random variable will not always be true, the Bayes classifier may still provide an 

optimal partitioning of the real line. This technique does allow us to use the Bayes rule 

applied to a normal density function, which is mathematically attractive and has the 

added advantage of working in a single dimension. 

Next we investigate two non-parametric classifiers which theoretically will give 

error rates which are greater than the Bayes rate but does not assume underlying normal 

statistics. 

3.4.5 k-Nearest Neighbor Classifier 

The nearest neighbor rule for classifying an n-dimensional observation feature 

vector x is, given a set of samples  X ={xj,x2,...,xN}, the classifier assigns our 
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observation vector to the class associated with the sample vector, xm, nearest to x [52]. 

As with the above procedure, the nearest-neighbor rule is a sub-optimal technique. Given 

a large set of samples, the nearest-neighbor rule tends to work well based on the 

assumption that the a posteriori probabilities are equal 

Pfa/xJ-Pfa/x) (3-76) 

since xm is sufficiently close to x. 

We can extend the nearest-neighbor rule to the k-nearest-neighbor rule. This rule 

follows along the same lines as the nearest-neighbor rule except that the observation 

vector is assigned to the class with the greatest frequency among the k nearest neighbors 

(kNN). Typically this is accomplished using a voting method among an odd-number of 

nearest neighbors. The observation vector is assigned to the class represented by the 

majority of the fe/VJVs. 

As the value of k increases, the error rate of the k-nearest-neighbor rule 

approaches the Bayes minimum error rate. Therefore, a large value for k will provide a 

reliable estimate. However, the value of k is limited by the dimension of the observation 

vector and the total number of vectors in the sample set. Also, the cost associated with a 

large k is in time and processing. When the dimension of the feature vector is large 

(n»l) and the number of samples is also large, the search algorithm can be quite 

extensive. There are clustering methods that have been developed, such as the branch 

and bound method [53] that can be applied to the sample space to reduce the search time. 
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We can also apply the Fisher linear discriminant (3.67) to the samples, as described 

above, to project the data into the best single dimension. 

3.4.6 Parzen Window Classifier 

The Parzen density estimate and the k-nearest neighbor density estimate are 

fundamentally very similar, but exhibit some different statistical properties. In the kNN 

approach, we fixed k (the number of sample vectors closest to our observation vector) and 

let the local region, v, around our observation vector, which contained the k samples to be 

a random variable. In the Parzen density estimate, we fix the local region, v, and let k be 

a random variable. 

If we define the local region around our observation vector to be L(X), then the 

probability mass of L(X) can be approximated by p(X)v, where v is the volume of L(X). 

Given a large number of samples, N, drawn from p(X), the probability mass can be 

estimated by counting the number of samples, k, within L(X) and computing k/N. We can 

then estimate the density function as 

P(X) = ^-V (3-77) 

We can also set up a kernel function, K(X) , with a volume v and height 1/v, 

around all existing samples. Then the average of the values of these kernel functions at X 

is 

PW = jjl*(X-X,) (3-78) 
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where the shape of the kernel function can take on any complex shape, provided 

f K(X)dX = 1. Typical kernel functions are either a normal or uniform kernel. 

Once we have an estimate of our probability mass function, we can apply the 

likelihood ratio classifier similar to the one given in (3.64). Then our likelihood ratio test 

- becomes 

Po(X)< Pi 

where we have determined the threshold based on the Bayes criterion. The dimensions of 

this data can also be reduced using the Fisher linear discriminant function (3.68). 

3.5 Joint Pitch Estimation 

Pitch is a measure of the fundamental frequency of voiced speech. Joint pitch 

estimation is a process by which an estimate is made of all fundamental frequencies 

present in a segment of co-channel speech. The number of fundamental frequencies is 

directly related to the number of voiced speech signals present in the co-channel signal. 

The pitch estimate is a crucial parameter for separating co-channel speech. Most 

separation systems rely on a priori pitch contours obtained from the uncorrupted speech 

signals prior to mixing. In real world applications, this information is not available. 

We have investigated and tested several techniques to estimate the pitch period of 

overlapping voiced speech. Based on these results, we have developed a technique to 

estimate the pitch contour of both signals. 
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3.5.1 Joint Pitch Estimation Techniques 

Peak-related methods offer the most promise in estimating the pitch from an 

uncorrupted speech signal. These techniques can be modified to measure the pitch 

frequencies of co-channel speech. Very few methods employ a single look approach in 

which both frequencies are measured simultaneously. Most methods are iterative. A 

measure of the stronger pitch frequency is made and then used to suppress the stronger 

harmonics. An estimate of the pitch of the weaker signal is then made from this residual 

signal. This technique depends on accurate measurement of the stronger pitch frequency. 

We present an investigation of three techniques. The modified covariance method is used 

to estimate the pitch frequencies simultaneously (single look). The modified 

autocorrelation and the maximum likelihood pitch estimators are evaluated, based on an 

iterative approach, using co-channel speech. 

The modified covariance (MCV) estimator is based on an autoregressive model of 

the vocal tract filter in which the linear prediction sequence is solved by minimizing the 

forward and backward prediction squared errors, described in Marple [41]. In work by 

Naylor and Porter [24] it was found that the magnitude spectrum of a (zero padded) 

sequence of the MCV coefficients reveals sharp spectral peaks (when inverted) at the 

location of narrow sinusoidal components. By first lowpass filtering the data then 

downsampling and applying a DFT to the MCV coefficients, the harmonics of both the 

stronger speaker and the weaker speaker become visible. A sophisticated clustering 

algorithm is used to group the spectral peaks, which are harmonically related, to 

reasonable pitch values.    An example of the spectrum of the MCV coefficients of 
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overlapping vocalic speech at SIR of 0 and -6 dB is provided in Figure 3.14. The segment 

of overlapping vocalic speech has fundamental frequencies of 111 Hz and 176 Hz 

respectively. The MCV analysis estimated the pitch frequencies to be 99 and 172 Hz at 

SIR = 0 dB and 128 and 176 Hz at SIR = -6 dB. 

While the MCV estimator produced estimates for two pitch frequencies, the 

technique was susceptible to pitch doubling errors, frequency shifts, and errors due to 

fluctuations in SIR. The system is not reliable due to the requirement of a sophisticated 

clustering routine that must be able to differentiate between a pitch peak and a pitch 

doubling peak associated with a stronger or weaker speaker. 

The autocorrelation technique has been used quite extensively for pitch estimation 

of uncorrupted speech [43]. We have modified this technique by performing a nonlinear 

transformation (data cubing) of the speech signal prior to pitch estimation. This 

nonlinear processing attenuates the lower frequencies and tends to force the pitch 

estimator to measure the higher pitch frequency. A block diagram of this technique is 

given in Figure 3.15. The data cubing enhances the periodicity of the stronger speech 

signal by suppressing the low amplitude portions (i.e. weaker speech signal) of the speech 

signal. This will enhance the F0 formant of the stronger signal and suppress the F0 format 

of the weaker speech signal. This cubing operation should also reduce the effects of pitch 

doubling, a common problem in pitch determination in which the higher formants (low 

amplitude portion of a speech segment) are erroneously labeled as the F0 formant. 
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Figure 3.14: Spectrum of MCV coefficients of overlapping vocalic speech segment: (a) 

SIR = 0 dB, pitch frequencies measured at 99 Hz and 172 Hz, and (b) SIR = -6 dB, pitch 

frequencies measured at 128 Hz and 176 Hz. True pitch frequencies are 111 and 176 Hz. 
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Figure 3.15:   Modified autocorrelation pitch estimation technique using nonlinear pre- 

processing. 

The iterative approach is highly dependent on the ability of the pitch estimator to 

accurately measure the fundamental frequency of the stronger speaker in the presence of 

another speech signal. An example of the modified autocorrelation technique's ability to 

measure the pitch of the stronger speaker is presented in Figure 3.16. In this example, it 

erroneously measured the pitch at 113 Hz. The true measurement should be 176 Hz. The 

error occurred because the F0 formant of the weaker signal constructively added with a 

weaker formant of the stronger speaker. The autocorrelation method only considers the 

lag associated with the F0 formant, which makes this routine more susceptible to pitch 

errors when the higher formant frequencies overlap. 

The maximum likelihood estimation (MLE) method measures the pitch estimate 

based on the contribution of all the formants within a signal [30]. By considering the 

contribution of all the formants, the MLE method is less susceptible to pitch doubling 

errors than the modified autocorrelation method. A block diagram of the MLE method is 

given in Figure 3.17. In the frequency domain, this periodic estimator can be interpreted 

as the inner product of a comb filter (inner spacing P) with the autocorrelation function of 

the input signal. The advantage of this estimator is that it looks at the contribution of all 
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the formant peaks within the autocorrelation function, thereby insuring an accurate pitch 

measurement of the stronger speech signal. 

An example of the MLE method is provided in Figure 3.18. The upper left-hand 

plot is that of the original overlapping vocalic speech signal. The upper right-hand plot is 

the lowpass filtered signal and the bottom plot is the output of the periodic estimator. 

The pitch value is chosen as the maximum value of g(P). The pitch estimate of the co- 

channel speech signal was 178 Hz which is very close to the measured pitch frequency, 

176 Hz, of the stronger signal. 

From our analysis, of the three techniques presented we have found the maximum 

likelihood pitch estimator to be least prone to error introduced from an interfering speech 

signal. In the following section we implement the MLE method into an iterative joint 

pitch estimation technique to measure the pitch contours of two speakers in a co-channel 

speaker environment. 
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Figure 3.16: Modified autocorrelation pitch estimation on overlapping vocalic speech at 

SIR = -6 dB. Pitch estimated at 113 Hz. 
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Figure 3.17: Maximum likelihood pitch estimation technique. 
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Figure 3.18: Maximum likelihood pitch estimation of overlapping vocalic speech at SIR 

= -6 dB. Pitch estimated at 178 Hz. 
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3.5.2 Maximum Likelihood Pitch Estimation with Harmonic Suppression 

We have developed an iterative method to measure the pitch frequencies of co- 

channel speech using the MLE method and harmonic magnitude suppression. This 

technique first measures the F0 formant of the stronger speaker using the maximum 

likelihood pitch estimator. Using this estimate, it then suppresses the harmonics 

associated with stronger speech signal using harmonic magnitude suppression. Our 

method of estimating the spectral harmonics of the stronger signal is provided in the next 

section. The MLE method is used on the residual signal to estimate the pitch of the 

weaker speech signal. This technique is outlined in Figure 3.19. 

Referring to Figure 3.19, an estimate of the pitch of the stronger speech signal is 

measured using the MLE method. If there is another voiced speech signal present, this 

pitch estimate is used to suppress the spectral harmonics associated with the stronger 

signal. The MLE method is then applied to the residual signal to estimate the pitch of the 

weaker signal. These estimates are then compared to a average pitch values accumulated 

for each speaker. An assignment is made based on the minimum distance between the 

average pitch value for that speaker and the measured pitch estimate. 

Figure 3.20 and Figure 3.21 shows an example resulting from applying our joint 

pitch estimation method to a voiced/voiced co-channel speech segment with a SIR = -6 

dB. The pitch frequency of the stronger signal is correctly identified at 178 Hz. See 

Figure 3.20. The dominant harmonics associated with the stronger signal are suppressed 
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and the signal is lowpass filtered, shown in the upper right-hand plot of Figure 3.21. The 

pitch frequency of the weaker signal is measured correctly at 111 Hz. 
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Figure 3.19:   Joint pitch estimation using a maximum likelihood pitch estimator with 

harmonic magnitude suppression. 
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Figure 3.20: Maximum likelihood pitch estimation of overlapping vocalic speech at SIR 

= -6 dB. Pitch estimate of stronger signal measured at 178 Hz. 
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Figure 3.21: Maximum likelihood pitch estimation on residual co-channel speech after 

harmonic suppression of dominant harmonics. Pitch estimate of weaker signal is 

measured at 111 Hz. 
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3.6 Harmonic Selection 

Given an ideal voiced speech segment, if the fundamental frequency is at F0 then 

inspection of the magnitude spectrum should reveal harmonics located at F0, 2F0, 3F0 ,.... 

However, a typical segment of voiced speech is only quasi-stationary. The center 

frequencies of these harmonics may not necessarily be at multiples of F0. Also, there is 

further corruption of the center frequency positions due to the addition of multiple signals 

within the channel. 

Predicting the center frequencies of harmonics using the pitch estimate has been 

widely used in the literature for harmonic suppression. A variation we have developed to 

this technique is as follows. First identify all peaks below a specified cut-off frequency 

within the co-channel speech magnitude spectrum. Using an estimate of the fundamental 

frequency of the stronger signal (FJ, assign to the stronger signal those significant peaks 

with center frequencies that are at or near multiples of Fs0 (Fs0, 2Fs0 , 3Fs0 ,...). It is 

assumed the harmonics associated with the stronger signal will have the highest overall 

energy. Using an estimate of the fundamental frequency of the weaker signal (FJ, 

assign to the weaker signal the remaining peaks, with center frequencies that are at or 

near multiples of FM (Fw0, 2Fw0 , 3FM ,...). Problems arise when a harmonic from the 

weaker signal overlaps a harmonic from the stronger signal. Under these conditions, we 

split the energy in that spectral peak between the two signals, giving the full energy of the 

spectral peak to the stronger signal and half the energy of that spectral peak to the weaker 

signal. If this value provides a smooth spectral magnitude contour for the weaker speech 
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segment, the harmonic parameters for both speakers are used to initialize the optimization 

routine. If the contour is not smooth, then we switch values and assign the full energy of 

the spectral peak to the weaker signal and half the energy of the spectral peak to the 

stronger signal. This provides a robust method to effectively initialize the harmonic 

parameters for overlapping vocalic speech. 

3.7 Speech Synthesis and Reconstruction 

Speech can be thought of as a series of silence, voiced and unvoiced sounds 

concatenated together to form intelligible speech. In this research, voiced speech 

segments have been resynthesized using a sinusoidal representation. This model 

reconstructs the voiced sounds using measured parameters from the co-channel signal. 

The model relies on estimates of the amplitude, center frequency and phase of each 

harmonic associated with each voiced speech segment to produce natural and intelligible 

speech. The unvoiced speech segments are obtained directly from filtering the co- 

channel speech signal. The discrete co-channel speech waveform is segmented by sliding 

a Hanning weighted window over the co-channel speech with a 50% overlap. Final 

reconstruction to produce intelligible, natural sounding speech is performed by 

sequentially overlapping (by 50%) and adding the resynthesized speech segments for 

each particular speaker. 

The ownership of a segment of speech, which has been separated from the co- 

channel speech segment is crucial to speech reconstruction. Misrepresentation of speech 
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segments can adversely affect the intelligibility of the reconstructed speech signal. The 

use of pitch contours has been a widely accepted method of identifying ownership of 

voiced speech segments. We rely on the voicing state determination algorithm, discussed 

in the previous section, along with the pitch contour to assign ownership of the 

reconstructed speech segments. 

We have shown in Chapter 2, that a Hanning weighted window is the best choice 

for segmenting the input data because of its preferred tradeoff of bandwidth versus 

leakage suppression. This tapered window is also compatible with the overlap-and-add 

processing used to reconstruct the signal at the output. In our case, we process the speech 

segments in the frequency domain, followed by an inverse transformation to the time 

domain. The inverse transform is modulated by the time-weighting window function. By 

processing overlapping frames, the tapered sections of the speech segments are added to 

produce natural sounding speech. This method smoothes any discontinuities resulting 

from the differences in processing consecutive frames. 
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4. RESULTS AND ANALYSIS 

The algorithms developed in Chapter 3 have been tested independently to measure their 

performance. These algorithms have also been implemented and tested in a speaker 

separation system using co-channel speech data created from the TIMIT database and 

using co-channel speech recorded in our laboratory. In this chapter, we present results on 

the voicing determination algorithm, the joint pitch estimation algorithm, the nonlinear 

constrained least squared optimization algorithm and our simultaneous adaptive co- 

channel speaker separation system using both synthetic and real speech data. 

4.1 Speech Databases 

There currently is no standard database for co-channel speech signals. Such a 

database would have to consist of clean speech signals from a large set of speakers, along 

with a set of co-channel speech from these same speakers. The speech signals would 

have to be recorded on multiple channels, simultaneously. Therefore, we have created 

two co-channel speech databases. The first one uses speech signals taken from an 

existing database to produce co-channel speech. We have chosen speech from the TIMIT 

database. Our co-channel version of this database will be referred to as the TIMIT_COC 

database. The second speech database was created from our own recordings of speech 

signals from a male and female talker, both separately and in a co-channel environment. 

This database is labeled the RPI COC database. 
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The TIMIT database consists of ten read English sentences from each of 640 

different speakers along with a hand-segmented phone transcription of each utterance. 

The sampling rate is 16 kHz. The TIMIT database is considered a standard database and 

is used extensively in all forms of speech processing research. The speakers and 

sentences we have chosen to use in our analysis are provided in Table 4.1. Using the 

TIMIT database, co-channel speech signals were created by first normalizing each speech 

waveform based on the average energy per frame. Two speech signals were then 

summed on a computer, in the time domain, at a given SIR to produce the desired co- 

channel speech signal. We have created male/female, female/female and male/male 

speech mixtures at SIRs of 0, -6 and -12 dB. Table 4.2 identifies the speech sentences 

used for training and those used for testing. Table 4.3 - 4.5 shows the four co-channel 

speech sentence combinations used for testing. These speech mixtures closely resemble a 

co-channel speaker environment. 

The RPI_COC database was recorded using an omni-directional dynamic 

microphone. The microphone has a frequency response between 100 and 8,000 Hz with a 

sensitivity of ±4 dB at 1,000 Hz. The data was recorded at a sampling rate of 22.050 kHz 

and digitized at 16 bits per sample. The data was then downsampled to 16 kHz, 

consistent with the TIMIT speech data. The speech consisted of English-native speaking 

male and female talker, reading from a manuscript, for four minutes. Speech data was 

recorded separately and simultaneously using a single microphone to create true co- 

channel speech signals. In the co-channel environment, two talkers were place equi- 

distance from the microphone and spoke simultaneously. This data was used to test the 
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overall effectiveness of our speaker separation system in a realistic co-channel speaker 

environment. 

Using the speech databases described above has allowed us to evaluate the 

performance of our VSDA and joint pitch estimation algorithms by comparing our results 

to reference signals obtained from the uncorrupted speech. It has also allowed us to 

compare the quality of our reconstructed speech signal to the original speech signal. 

Speech from the TIMIT database was used to perform parameter estimation analysis, 

including voicing state determination, joint pitch estimation and speaker separation. 

Table 4.1: TIMIT database speech sentences used in analysis. 

TIMIT Database (Northern USA) 
Speech Sentences 

Male Female 

mbjvO mcewO fajwO FcmmO 

sal sal sal sal 

sa2 sa2 sa2 sa2 

sil247 si 1442 si 1263 sil083 

si 1877 si2072 si 1893 sil957 

si617 si812 si633 si453 

sxl67 sxl82 sxl83 sxl83 

sx257 sx272 sx273 sx273 

sx347 sx362 sx3 sx363 

sx437 sx452 sx363 sx420 

sx77 sx92 
  

sx93 sx93 
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Table 4.2: Speech sentences used to train and test the VSDA 

Male 
mbjvO 

sa2 

sxl67 

sx257 

sx347 

sx437 

sx77 

sal 

SÜ247 

sil877 

si617 

mcewO 

Female 
fajwO 

Training Data 

sa2 

sxl82 

sx272 

sx362 

sx452 

sx92 

sal 

sxl83 

sx273 

sx3 

sx363 

sx93 

Testing Data 

sal 

si 1442 

si2072 

si812 

sa2 

sil263 

si 1893 

si633 

FcmmO 

sal 

sxl83 

sx273 

sx363 

sx420 

sx93 

sa2 

si 1083 

sil957 

si453 

Table 4.3: Speech sentence pairs used for testing male/female co-channel speech. 

Male/Female 

Co-Channel 

Sentence 

Talker 1 

mbjvO 

Talker 2 

fajwO 

Cl sal sa2 

C2 sil247 si 1893 

C3 si 1877 sil263 

C4 si617 si633 
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Table 4.4: Speech sentence pairs used for testing male/male co-channel speech. 

Male/Male 

Co-Channel 

Sentence 

Talker 1 

mbjvO 

Talker 2 

mcewO 

Cl sal si812 

C2 sil247 si2072 

C3 si 1877 si 1442 

C4 si617 sal 

Table 4.5: Speech sentence pairs used for testing female/female co-channel speech. 

Female/Female 

Co-Channel 

Sentence 

Talker 2 

fajwO 

Talker 2 

fcmmO 

Cl sa2 sa2 

C2 si 1263 sil957 

C3 si 1893 sil083 

C4 si633 si453 
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4.2 Parameter Estimation Analysis 

This section presents results obtained from testing the voicing state determination 

algorithm (VSDA) and the joint pitch estimation algorithm on the TIMIT_COC speech 

database. 

4.2.1 Voicing State Determination Algorithm 

Three different sets of co-channel speech mixtures were used to test our co- 

channel VSDA. The spoken language was English and the signals were taken from the 

TIMIT_COC database. The signals were extracted from the database and combined in a 

male/female, male/male and female/female mixture as described above. All three 

mixtures were tested at SIR = 0 dB, with the male/female mixture also tested at SIR = -6 

dB. 

From the database, we chose six sentences for training and four sentences for 

testing. See Table 4.2. The training sentences were specifically chosen to provide 

representation of the different phones produced during speech. The test sentences 

provided a reasonable sampling of the different phones that would be found in normal 

speech. The true voicing state for each signal was determined prior to mixing. 

Voicing state determination of an uncorrupted speech signal is based on the zero 

crossing rate and the short time energy measure. The convention we adopted for 

classifying the voicing state of uncorrupted speech is as follows. When the zero crossing 

rate was equal to or below the threshold and the energy measure was above the threshold, 
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the speech was label as voiced. If the zero crossing rate was above the threshold and the 

energy measure was also above the threshold, the speech segment was labeled as 

unvoiced. Otherwise, the energy was below the threshold and the speech segment was 

labeled as silence. This was the same technique we used to create the training data for the 

VSDA. The a priori probability of a particular state occurring was set to (Refer to Figure 

3.12): 

Level 1: P(some voiced speech) = .85 P(unvoiced speech) = .15 

Level 2: P(all voiced speech) = .5 P(mixed voiced speech) = .5 

Level 3: Piyoiced/unvoiced speech) = .5      P(unvoiced/voiced speech) = .5 

assuming the two speakers were speaking simultaneously for the total length of time. 

The training data for each mixture was formed by segmenting the six test 

sentences into voiced, unvoiced, and silent frames. The voiced, unvoiced, and silence 

frames were randomly mixed with the other speakers voiced, unvoiced, and silence 

frames to produce 2000 voiced/voiced, voiced/unvoiced, unvoiced/voiced, and 

unvoiced/unvoiced co-channel speech frames each. The co-channel speech segments 

were then grouped according to the classifications outlined in Figure 3.12. Feature 

vectors were extracted from the training data. The Fisher linear discriminant was applied 

to the feature set to project them into the single dimension which provided the best 

separation. This was performed at each of the three classification levels described above. 

The Bayes, kNN, and Parzen window classifiers, outlined in Section 3.4.4 through 

Section 3.4.6, where applied to the sample data to determine the voicing classification. 
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In the Bayes approach, the thresholds were calculated using the Bayes criterion, assuming 

a normal distribution function. In the kNN approach, the number of nearest neighbors 

was set to k = 7. We used a uniform kernel function for the Parzen window and a volume 

or window width approximately equal to the standard deviation of the sampled data. The 

volume or window width, in the Parzen window approach, varied at each decision level. 

As with the number of nearest neighbors, several experiments were run to determine the 

optimal window size. While all the distributions were not normal, all were unimodal. In 

the Bayes approach using the assumption that the distributions were normal, provided 

similar results to the nonparametric approaches. Histograms of the sample data used in 

the analysis, for a male/female speech mixtures at 0 dB are provided in Figure 4.1 

through Figure 4.3. 

Cumulative results of all four test sentence combinations for each speech mixture 

are presented below. A confusion matrix of the results from the voicing state 

determination algorithm, for the male/female, male/male and female/female speech 

mixtures at SIR = 0 dB are presented in Tables 4.6 - 4.14 using the three approaches 

given above. The results for the male/female mixture at SIR = -6 dB are presented in 

Table 4.15 using only the Bayes approach. The results are in percent detection, with the 

raw scores (number of frames detected) provided in parentheses. The values along the 

main diagonal in the tables represent the percentage of co-channel speech segments 

labeled correctly. The values down each column, off the main diagonal, represent the 

percentage of incorrectly labeled segments belonging to the true state (missed detection). 
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The values along each row, off the main diagonal, represent the percentage of speech 

segments which were incorrectly identified belonging to the estimated state (false detect). 

0.045 

-3 -2-10 1 
Distribution of projected feature vectors xlO" 

Figure 4.1: Histogram comparing distribution between Voiced (HO) and Unvoiced (HI) 

feature values used in training (Level 1) on a male/female speech mixture. 
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-5 -3 -2 -1 
Distribution of projected feature vectors 

0 
xlO -3 

Figure 4.2:   Histogram displaying distribution of All Voiced (HO) and Mixed Voiced 

(HI) feature values used in training (Level 2) on a male/female speech mixture. 
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-3 -2-10 1 
Distribution of projected feature vectors xlO" 

Figure 4.3: Histogram displaying distribution of Voiced/Unvoiced (HO) and 

Unvoiced/Voiced (HI) feature values used in training (Level 3) on a male/female speech 

mixture. 
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The VSDA performed better on the different gender mixtures than on the same 

gender mixtures. Speech characteristics vary more between speakers of different gender 

than speakers of the same gender. The three classifiers had similar results in overall 

detection rates. Considering just the results from the Bayes classifier, the overall 

classification performance of the male/female speech mixtures was 83.43%, while that for 

the male/male mixtures was 76.49% and for the female/female mixtures was 71.99%. 

For the different gender mixtures, the performance of the VSDA improved to 84.21% 

when the SIR was -6 dB compared to the same speech sentence pairs at SIR = 0 dB. This 

slight improvement of the overall detection performance was mainly due to the increased 

classification of the stronger speaker's voicing states. 

The majority of the errors, consistent throughout each speech mixture and each 

approach, occurred when mixed voiced speech (V/UV and UV/V) was misclassified as all 

voiced speech (V/V). Frames in which there is a voicing transition (onset or offset of 

voicing) resulted in mixed voiced speech being misclassified as all voiced or all 

unvoiced. 
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Table 4.6: Confusion matrix, using the Bayes classifier, of Male/Female speech mixtures 

with SIR = 0 dB. Overall 83.43% of the speech segments were correctly classified. 

Values are in percent detection with raw scores in parentheses. 

Voicing 
State 

SIL V/V V/UV UV/V UV/UV 

SIL 100 (86) 0 0 0.34 (1) 6.44(15) 

v/v 0 84.17(234) 24.11(34) 7.82 (23) 0 

v/uv 0 10.43(29) ' 63.12(89) 1.02(3) 2.58 (6) 

uv/v 0 5.40 (15) 1.42(2) 88.10(259) 8.15(19) 

uv/uv 0 0 11.35(16) 2.72 (8) 82.83 (193) 

Table 4.7: Confusion matrix, using the kNN classifier, of Male/Female speech mixtures 

with SIR = 0 dB. Overall 83.62% of the speech segments were correctly classified. 

Values are in percent detection with raw scores in parentheses. 

Voicing 
State 

SIL V/V V/UV UV/V UV/UV 

SIL 100(86) 0 0 0.34(1) 6.01(14) 

V/V 0 79.50(221) 14.18(20) 5.44(16) 0 

V/UV 0 13.31(37) 66.67(94) 1.02 (3) 1.72(4) 

uv/v 0 7.19(20) 0 87.07(256) 3.86(9) 

uv/uv 0 0 19.15(27) 6.12(18) 88.41(206) 
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Table 4.8: Confusion matrix, using the Parzen window classifier, of Male/Female speech 

mixtures with SIR = 0 dB. Overall 83.24% of the speech segments were correctly 

classified. Values are in percent detection with raw scores in parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 

State 
SIL 100 (86) 0 0 0.34(1) 6.01(14) 

v/v 0 80.22(223) 13.48(19) 4.76(14) 0.43(1) 

v/uv 0 12.95(36) 80.84(114) 1.70(5) 5.58(13) 

uv/v 0 6.83(19) 2.13(3) 91.84(270) 16.74(39) 

uv/uv 0 0 3.55(5) 1.36(4) 71.24(166) 

Table 4.9: Confusion matrix, using the Bayes classifier, of Male/Male speech mixtures 

with SIR = 0 dB. Overall 76.49% of the speech segments were correctly classified. 

Values are in percent detection with raw scores in parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 
State 
SIL 100 (137) 0 0 0 10.08 (25) 

V/V 0 84.39 (265) 23.80 (25) 10.66 (29) 1.21 (3) 

v/uv 0 9.56 (30) 47.62 (50) 12.87 (35) 2.42 (6) 

uv/v 0 6.05 (19) 10.48(11) 66.18(180) 9.27 (23) 

uv/uv 0 0 18.10(19) 10.29 (28) 77.02(191) 
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Table 4.10: Confusion matrix, using the kNN classifier, of Male/Male speech mixtures 

with SIR = 0 dB. Overall 74.16% of the speech segments were correctly classified. 

Values are in percent detection with raw scores in parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 
State 
SIL 100(137) 0 0 0 10.08 (25) 

v/v 0 78.34(246) 19.05(20) 9.56(26) 1.21 (3) 

v/uv 0 12.42(39) 38.10(40) 9.93(27) 1.61(4) 

uv/v 0 8.60(27) 8.57(9) 66.91(182) 9.27 (23) 

uv/uv 0 0.64(2) 34.28(36) 13.60(37) 77.83(193) 

Table 4.11: Confusion matrix, using the Parzen window classifier, of Male/Male speech 

mixtures with SIR = 0 dB. Overall 77.42% of the speech segments were correctly 

classified. Values are in percent detection with raw scores in parentheses. 

Voicing 
State 

SIL V/V V/UV UV/V UV/UV 

SIL 100 (137) 0 0 0 10.08 (25) 

V/V 0 79.94(251) 14.28(15) 5.88(16) 1.21(3) 

v/uv 0 11.46(36) 62.86(66) 11.40(31) 4.03(10) 

uv/v 0 8.60(27) 11.43(12) 77.94(212) 16.94(42) 

uv/uv 0 0 11.43(12) 4.78(13) 67.74(168) 
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Table 4.12: Confusion matrix, using the Bayes classifier, of Female/Female speech 

mixtures with SIR = 0 dB. Overall 71.99% of the speech segments were correctly 

classified. Values are in percent detection with raw scores in parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 

State 
SIL 98.75 (79) 0 0 1.24(2) 8.57 (18) 

v/v 0 81.51 (260) 23.90 (60) 13.66 (22) 0 

v/uv 0 7.21 (23) 54.59 (137) 24.84 (40) 4.76 (10) 

uv/v 0 10.97 (35) 13.94 (35) 50.94 (82) 2.38 (5) 

uv/uv 1.25 (1) 0.31(1) 7.57 (19) 9.32 (15) 84.29 (177) 

Table 4.13: Confusion matrix, using the kNN classifier, of Female/Female speech 

mixtures with SIR = 0 dB. Overall 71.79% of the speech segments were correctly 

classified. Values are in percent detection with raw scores in parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 

State 
SIL 98.75 (79) 0 0 1.24(2) 8.57 (18) 

V/V 0 79.62(254) 21.12(53) 9.94(16) 0 

V/UV 0 6.27(20) 55.78(140) 20.50(33) 3.33(7) 

uv/v 0 13.48(43) 11.55(29) 47.83(77) 0.95(2) 

uv/uv 1.25 (1) 0.63(2) 11.55(29) 20.50(33) 87.15(183) 
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Table 4.14: Confusion matrix, using the Parzen window classifier, of Female/Female 

speech mixtures with SIR = 0 dB. Overall 72.58% of the speech segments were correctly 

classified. Values are in percent detection with raw scores in parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 
State 
SIL 98.75 (79) 0 0 1.24(2) 8.57 (18) 

v/v 0 77.43(247) 17.53(44) 9.32(15) 0 

v/uv 0 9.09(29) 64.54(162) 23.60(38) 10.95(23) 

uv/v 0 13.48(43) 15.54(39) 60.87(98) 6.67(14) 

uv/uv 1.25 (1) 0 2.39(6) 4.97(8) 73.81(155) 

Table 4.15: Confusion matrix, using the Bayes classifier, of Male/Female speech 

mixtures with SIR = -6 dB. Overall 84.21% of the speech segments were correctly 

classified. Values are in percent detection with raw scores in parentheses. 

Voicing 
State 

SIL V/V V/UV UV/V UV/UV 

SIL 100 (75) 0 0 0 5.74 (14) 

V/V 0 83.46 (232) 8.51 (12) 10.20 (30) 0 

v/uv 0 10.07 (28) 74.47 (105) 1.02 (3) 2.87 (7) 

uv/v 0 6.47 (18) 1.42(2) 85.72 (252) 7.37 (18) 

uv/uv 0 0 15.60 (22) 3.06 (9) 84.02 (205) 
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4.2.2 Joint Pitch Estimation 

We have tested our joint pitch estimation algorithm, based on the maximum 

likelihood pitch estimator and harmonic suppression, on the same speech mixtures used 

to test the VSDA. For this test, we assumed the voicing state and gender of each speaker 

was known prior to pitch estimation. This information allowed us to isolate the 

performance of the pitch estimation routine. 

The pitch contour of the co-channel speech was measured first, using the 

maximum likelihood pitch estimator, presented in Section 3.5.2. These values 

represented the pitch frequency of the stronger speech segment, which may or may not 

originate from the stronger speaker. The pitch contour was then passed through a median 

filter for smoothing. Based on the voicing state of the two speakers, the pitch of the 

weaker signal was calculated on those speech segments that were identified as 

voiced/voiced. The pitch frequency of the weaker signal was measured using harmonic 

suppression and the maximum likelihood pitch estimator. Refer back to Figure 3.19. For 

those segments, which were a mixture of voiced and unvoiced speech, the measured pitch 

frequency was assigned to the speaker which was voiced. The pitch contours were 

constructed on a frame-by-frame basis. The final pitch contours for both speakers were 

then passed through a median filter to remove any pitch doubling associated with the 

onset or offset of voicing. These values were then compared to the reference pitch 

contour, measured from the uncorrupted speech signal (prior to mixing) using the 

maximum likelihood pitch estimator. These pitch contours were passed through a median 

filter, again to reduce pitch doubling errors.  An example comparing the reference pitch 
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contour (measured from the uncorrupted speech signal) with the pitch contour measured 

from the co-channel speech signal is given in Figure 4.4. 

We conducted experiments using the same four, two speaker co-channel speech 

sentences pairs used to test the VSDA. Cumulative results the four co-channel speech 

sentences for each speech mixture are presented below. Figures 4.5 - 4.8 provides a 

histogram of the pitch errors made by the joint pitch estimator accumulated over all four 

sentences for each of the four speech mixtures (M/F OdB, M/M OdB, F/F OdB, and M/F 

-6dB). The pitch error was defined to be the difference between the reference pitch 

frequency and the estimated pitch frequency, relative to 100 Hz, for each frame. Tables 

4.16 - 4.19 provides quantitative measurements that can be used to summarize these 

results by showing the percentage of frames in which the pitch error was greater than 

20%, 10%, and 5% of our normalization factor (100 Hz). That is, the percentage of 

frames in which the pitch estimates were greater than 20 Hz, 10 Hz, and 5 Hz from the 

reference value. For these tests, we have evaluated the performance of the joint pitch 

estimator under realistic conditions by considering voiced/voiced, voiced/unvoiced, and 

unvoiced/voiced co-channel speech mixtures. 

Pitch errors due to pitch doubling, occurred during the onset and offset of voicing. 

Pitch doubling occurs when the estimated pitch frequency is measured at twice the true 

pitch frequency. Pitch doubling contributed to those errors greater than 20 Hz. Pitch 

errors also resulted from pitch crossing, in which the pitch contour of one speaker crosses 

the pitch contour of another speaker. Poor suppression of the stronger harmonics also 

resulted in pitch errors by introducing erroneous harmonics in the residual signal that was 
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used to estimate the pitch frequency of the weaker speaker. This caused pitch estimates 

of the weaker signal to be measured near the pitch estimates of the stronger signal. We 

can see that in the estimated pitch contour of the male speaker in Figure 4.4 (a). 
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Figure 4.4: Comparison between pitch contour measured on uncorrupted speech (solid 

line) and the pitch contour measured from the co-channel speech (dotted line) for (a) male 

speaker, and (b) female speaker. Speech was taken from the TIMIT_COC database and 

mixed at SIR = 0 dB. 
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Figure 4.5: Histogram of normalized pitch errors (relative to 100 Hz) at SIR = 0 dB for 

male/female co-channel speech mixtures, (a) Male, (b) Female, and (c) Total for both 

male and female pitch errors. 
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Figure 4.6: Histogram of normalized pitch errors (relative to 100 Hz) at SIR = 0 dB for 

male/male co-channel speech mixtures, (a) Malel, (b) Male2, and (c) Total of both Malel 

and Male2 pitch errors. 
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Figure 4.7: Histogram of normalized pitch errors (relative to 100 Hz) at SIR = 0 dB for 

female/female co-channel speech mixtures, (a) Female 1, (b) Female2, and (c) Total of 

both Female 1 and Female2 pitch errors. 
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Figure 4.8: Histogram of normalized pitch errors (relative to 100 Hz) at SIR = -6 dB for 

male/female co-channel speech mixture, (a) Male, (b) Female, and (c) Total of both male 

and female pitch errors. 
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Table 4.16: Percentage of pitch errors, for a male/female mixture (SIR = 0 dB), which 

were greater than 20%, 10%, and 5% of the normalization factor (100 Hz). The average 

pitch frequencies for the male and female speakers were 109.37 Hz and 186.44 Hz 

respectively. 

Speaker 

Male 

Female 

Combined 

Percentage of Pitch Errors greater than x% of 100 Hz 

>20% 

12.65 

17.69 

15.56 

>10% 

17.66 

19.79 

18.89 

>5% 

21.00 

22.42 

21.82 

Table 4.17: Percentage of pitch errors, for a male/male mixture (SIR = 0 dB), which 

were greater than 20%, 10%, and 5% of the normalization factor (100 Hz). The average 

pitch frequencies for the Malel and Male2 speakers were 109.37 Hz and 157.0 Hz 

respectively. 

Speaker Percentage of Pitch Errors greater than x% of 100 Hz 

>20% >10% >5% 

Malel 31.5 42.24 48.69 

Male2 30.38 33.11 36.01 

Combined 30.85 36.92 41.29 
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Table 4.18: Percentage of pitch errors, for a female/female mixture (SIR = 0 dB), which 

were greater than 20%, 10%, and 5% of the normalization factor (100 Hz). The average 

pitch frequencies for the Malel and Male2 speakers were 186.95 Hz and 213.82 Hz 

respectively. 

Speaker Percentage of Pitch Errors greater than x% of 100 Hz 

>20% >10% >5% 

Femalel 25.61 34.39 41.93 

Female2 22.18 29.92 34.10 

Combined 24.05 32.35 38.36 

Table 4.19: Percentage of pitch errors, for a male/female mixture (SIR = -6 dB), which 

were greater than 20%, 10%, and 5% of the normalization factor (100 Hz). The average 

pitch frequencies for the male and female speakers were 109.17 Hz and 186.44 Hz 

respectively. 

Speaker Percentage of Pitch Errors greater than x% of 100 Hz 

>20% >10% >5% 

Male 21.92 29.28 33.33 

Female 15.04 18.16 20.99 

Combined 18.03 23.00 26.36 
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4.3 Constrained Nonlinear Optimization 

Our constrained nonlinear least squared optimization algorithm is used to separate 

overlapping voiced speech. We tested this algorithm using simulated speech data and 

from a single frame of co-channel speech data taken from the TIMIT_COC database. 

The simulated data consisted of two vocalic speech segments, represented as a sum of 

sine waves. The co-channel speech data was taken from a frame of overlapping vocalic 

speech produced from a male and female talker. Our results are presented below. 

The first scenario was to test the optimization algorithm on data comprised of two 

simulated vocalic speech segments, represented as a sum of sine waves where the 

unknown variables were the amplitude, phase, and frequency of two harmonics. The sum 

of these two simulated speech segments was used to model a segment of co-channel 

speech. This signal can be represented as 

4 

s(x,n) = 2,x, [i]cos(2JQtx2[i] + x3[i]) (4.1) 

where Xj is a set of vectors representing the amplitude (x,), frequency (x2), and phase (x3) 

for each harmonic.   The reference values for our simulated co-channel speech segment 

were 

JCj =[5   7   10   8]' 

JC2=[101    150   205   303] (4.2) 

*3 = [1   -.2   -.3   -.3]' 
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where the first and third harmonics were associated with our first signal and the second 

and fourth harmonics were associated with our second signal. The initial conditions of 

our unknown variables were 

jc,=p   9   4   5]' 

x2=[98   140   196   3101 (4.3) 

x3 = [15   -.24   -.33   -.32]' 

Constrained nonlinear optimization was applied to the simulated co-channel 

signal to minimize the squared error between the reference co-channel signal and the 

estimated co-channel signal by optimizing the amplitude, phase, and center frequency 

parameters. The input values to the optimization routine were the initial conditions of our 

unknown variables.  The reference signal was generated using the reference values. The 

signals were Hanning weighted prior to optimization.   The solution converged in 47 

iterations with a least squared error of 2.9189e~7. The final values of our variables were 

x, = [4.9637   6.8817   9.6020   7.6442J 

x2 =[100.8143   149.9649   204.9410   303.0004] (4.4) 

JC3 = [5978   -1.3418   -2.9090   -2.3649J 

A comparison of the two simulated signals, their initial conditions and the resulting signal 

after optimization are given in Figure 4.9 and Figure 4.10. 

In our next experiment, we tested the ability of the constrained nonlinear 

optimization algorithm to estimate the unknown harmonic parameters of two vocalic 

speech segments taken from the TIMIT_COC database. The two test signals are shown 

in Figure 4.11 (a) and (b) with the co-channel signal (the sum of both signals) shown in 
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Figure 4.11 (c). The speech signals were summed on the computer at an average SIR = 0 

dB. The speech segment in Figure 4.11 (a) was taken from the vocalic 'ao' sound 

produced from a male talker when saying the word 'bought'. The signal in Figure 4.11 

(b) was taken from the vocalic 'av' sound as would be produced from a female talker 

when saying the word 'bite'. These fundamental frequencies of these two speech 

segments are 130 Hz and 245 Hz respectively. 

Our speech segment, represented as a sum of sine waves each with a given 

amplitude, frequency and phase, can be written as 

M 

*[»] = £ akcos((okn + <|>4) (4.5) 

This can be rewritten as 

s[n] = £,akcos((Ok n)cos(<pk)- aksin((Okn)sin($>k) (4.6) 
k=\ 

M 

s[n]=y£akcos((ökn)+$ksin((ökn) (4.7) 
*=/ 

where 

«* =akcosfyk) 

ß* = -a
k
sin($k) 

The unknown variables then become ak, ßk and cok.. 

(4.8) 
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Figure 4.9: Reconstruction of simulated vocalic speech signal using constrained 

nonlinear optimization, comparing (a) reference signal 1, (b) initial signal 1, and (c) 

reconstructed signal 1. 
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Figure 4.10: Reconstruction of simulated vocalic speech signal using constrained 

nonlinear optimization, comparing (a) reference signal 2, (b) initial signal 2, and (c) 

reconstructed signal 2. 
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The initial conditions for this test are similar to those in the previous test. The 

harmonics of the combined speech signal were set to integer multiples of the fundamental 

frequencies of both speech segments. The amplitudes were set to a nominal value (0.10). 

The upper and lower bounds on the frequencies were +10 Hz and -10 Hz respectively. 

The upper and lower bounds on the amplitude terms were set to +1 and -1 respectively. 

We selected the first eight harmonics of each segment for optimization. This represented 

a total of 48 unknown variables. 

Results of our test are presented in Figure 4.12-4.15. The optimization routine 

converged with an overall least squared error of 4.65xl0"2. This error represents 

approximately 5.9% of the overall average energy in the co-channel signal. Specifically, 

the percentage of error, between the original male speech segment and the reconstructed 

speech segment was 2.4% while that for the female speech segment was 8.67%. 

Figure 4.12 shows the original Hanning weighted male speech segment in (a) and 

the recovered speech segment in (b). Figure 4.13 displays the magnitude frequency 

spectrum of the original male speech segment in (a) and the recovered speech segment in 

(b). Figure 4.14 shows the original Hanning weighted female speech segment in (a) and 

the recovered speech segment in (b), while Figure 4.15 displays the magnitude frequency 

spectrum of the female original speech segment in (a) and the recovered speech segment 

in (b). From these plots we see that the recovered speech segments for both speakers 

accurately resemble their original speech segments. 
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Figure 4.11:  Harming weighted speech segments, (a) male speaker, (b) female speaker, 

and (c) co-channel speech (male+female). 
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Figure 4.12:  Male speech segment using constrained nonlinear optimization to separate 

co-channel speech, (a) reconstructed speech segment, (b) original speech segment. 
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Figure 4.13: Magnitude spectrum of male speech segment using constrained nonlinear 

optimization to separate co-channel speech, (a) reconstructed spectrum, (b) original 

spectrum. 
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Figure 4.14: Female speech segment using constrained nonlinear optimization to 

separate co-channel speech, (a) reconstructed speech segment, (b) original speech 

segment. 
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Figure 4.15: Magnitude spectrum of female speech segment using constrained nonlinear 

optimization to separate co-channel speech, (a) reconstructed spectrum, (b) original 

spectrum. 
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4.4 Simultaneous Adaptive Co-Channel Speaker Separation 

The main goal of our research was to separate the speech of two talkers recorded 

over a single channel. An effective speaker separation system must operate 

autonomously, that is, it must process the co-channel speech signal without a priori 

information (i.e. pitch contours). Our co-channel speaker separation system is an 

autonomous system which performs the following tasks: 

1. Train the VSDA, using supervised learning, to classify the co-channel speech. 

2. Create co-channel speech data at a given SIR. 

3. Calculate the co-channel voicing state and pitch contour for each speaker. 

4. Apply the proper processing technique, based on the voicing state of each 

speaker, to separate the speech into desired and interfering speech segments 

5. Reconstruct the two speech signals from the processed speech segments. 

We have tested our speaker separation system, presented in Section 3.1.3, on 

male/female, male/male and female/female speech mixtures using speech signals from 

the TIMIT_COC database, outlined in Tables 4.3 - 4.5. The data consisted of the same 

four, two speaker co-channel speech sentences used to test the VSDA and the joint pitch 

estimation algorithm. The Bayes classifier was used in the VSDA for these experiments. 

The optimization routine was simplified by excluding the center frequencies from the 

optimization routine to reduce the overall processing time. This reduced the processing 

time by a factor of 20. The phase and amplitude were estimated using the optimization 

routine, while the center frequency terms were estimated using our harmonic selection 
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algorithm presented in Section 3.6. Cumulative results of the four co-channel speech 

sentences for each speech mixture are presented below. We also conducted tests using 

data taken from the RPI_COC speech database. Results on a simulated co-channel 

speech signal and a real co-channel speech signal are also presented below. 

To compensate for the performance of the voicing state determination algorithm, 

we introduced a decision structure into the voiced/voiced branch of the system. Our 

VSDA may erroneously classify mixed voiced speech as all voiced speech. In our system 

we implemented a method which would first estimate the stronger speech signal, based 

on the pitch frequency, using harmonic selection. Then an estimate of the weaker signal 

using two different methods was made. The first method, assuming the weaker signal 

was voiced, estimated the signal using harmonic magnitude suppression. The second 

method assumed the weaker signal was unvoiced and estimated the signal using a 

highpass filter. Two co-channel signals were created, the first was sum of the estimate of 

the stronger signal plus the estimate of the assumed voiced signal, and the second was 

created from the estimate of the stronger signal and the estimate of the assumed unvoiced 

signal. These two signals were then compared to the measured co-channel signal. The 

co-channel signal, which had the smallest error (see equation 4.9) would decide the 

correct co-channel voicing state and separation would be performed as described in 

Chapter 3. 

Figure 4.16 and Figure 4.17 provides an example showing a comparison between 

two speech signals before mixing and after separation for a male/female speech mixture 

at SIR = 0 dB.  The original and reconstructed speech signals for the male and female 
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talker are shown in Figure 4.16 and Figure 4.17 respectively. The reconstructed speech 

signals are intelligible and sound similar to the original uncorrupted speech signals. 

Tables 4.20 - 4.23 provides a relative error measurements between the original 

speech signal and the reconstructed speech signal for both talkers and for the co-channel 

speech signals in the ten, two-speaker co-channel speech combinations. We define this 

error measurement as 

ii#i-s[ftf 
Re lative_Error = -^  (4.9) 

xwtf 
where N is the total length of the speech signal. Results are presented for each speech 

sentence pair for all speech mixtures. The last column in each table represents the 

average of the relative error measurements over the ten sentence combinations for each 

talker. While these values do not give an indication of the intelligibility of the speech, 

they do provide a relative error measure across mixtures. We can see from these results 

that our speaker separation system performed better on male/female co-channel speech 

signals than on same gender co-channel speech segments. These results consistent with 

the previous two experiments. 
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Figure 4.16: Male speech signal, from a male/female co-channel speech mixture at SIR; 

0 dB. (a) Reconstructed male speech signal and (b) original male speech signal. 
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Figure 4.17: Female speech signal, from a male/female co-channel speech mixture at SIR 

= 0 dB. (a) Reconstructed female speech signal and (b) original female speech signal. 
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Table 4.20: Error measurements between reconstructed signal and original signal in a 

male/female mixture with SIR = 0 dB. Mean represents mean error over 4 sentence 

combinations for male (M), female (F), and Co-channel (C) signals. 

M/F 
Mixture 

OdB 

Co-Channel Speech Sentence 
Relative Error 

Cl C2 C3 C4 Mean 

M .6148 .4551 .5817 .5902 .5604 

F .5190 .4345 .3238 .4408 .4295 

C .2811 .2438 .2350 .2636 .2559 

Table 4.21: Error measurements between reconstructed signal and original signal in a 

male/male mixture with SIR = 0 dB. Mean represents mean error over 4 sentence 

combinations for Malel (Ml), Male2 (M2), and Co-channel (C) signals. 

M/M 
Mixture 

OdB 

Co-Channel Speech Sentence 
Relative Error 

Cl C2 C3 C4 Mean 

Ml .9550 .7516 .8854 .9646 .8891 

M2 .6231 .5621 .7064 .7719 .6659 

C .2960 .3139 .2734 .2547 .2845 
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Table 4.22: Error measurements between reconstructed signal and original signal in a 

female/female mixture with SIR = 0 dB. Mean represents mean error over 4 sentence 

combinations for Femalel (Fl), Female2 (F2), and Co-channel (C) signals. 

F/F 
Mixture 

OdB 

Co-Channel Speech Sentence 
Relative Error 

Cl C2 C3 C4 Mean 

Fl .9116 .7866 .8723 .8325 .8508 

F2 1.2075 1.0048 1.1318 1.3880 1.1830 

C .2574 .2193 .2178 .2202 .2287 

Table 4.23: Error measurements between reconstructed signal and original signal in a 

male/female mixture with SIR = -6 dB. Mean represents mean error over 4 sentence 

combinations for male (M), female (F), and Co-channel (C) signals. 

M/F 
Mixture 

-6 dB 

Co-Channel Speech Sentence 
Relative Error 

Cl C2 C3 C4 Mean 

M .7688 .6095 .8618 .8628 .7757 

F .3570 .3428 .2821 .3704 .3381 

C .2208 .2231 .2182 .2344 .2242 
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To determine the impact of excluding the center frequency terms as optimization 

parameters, we repeated the male/female, SIR = 0 dB experiment with the center 

frequency terms included in the optimization. The average relative error, for the male, 

female, and co-channel signals dropped by 1.29%, 1.05%, and 35.15%, respectively when 

the center frequency terms were included. 

To test the effectiveness of our speaker separation system, we have shown in 

Figure 4.18 through Figure 4.21 the change of the average relative error, due to the 

introduction of a priori information, for the three different speech mixtures (male/female, 

male/male and female/female). The labeling along the x-axis represents those results 

obtained when there was no cheating (NC), when the true voicing states (TVS) were used 

instead of the estimated voicing states, when the true pitch contours (TP) were used 

instead of the measured pitch contours, and when both the true voicing states and true 

pitch contours (TVS & TP) were used. 

In Figure 4.18 we discover that our system design is optimized to separate two 

speakers of a different gender. Figure 4.19 through Figure 4.21 demonstrate the relative 

importance to our system design in obtaining accurate pitch contours when the two 

speakers were of the same gender. When both speakers were of the same gender, the 

relative error dropped significantly when the true pitch contours were used. The pitch 

contours are crucial to providing an accurate estimate of each talker's harmonic peaks in 

the co-channel speech. 

These graphs also show that an accurate voicing state determination algorithm is 

less important.   Our system design is somewhat resilient to errors in estimating the 
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voicing state. Our voicing state determination algorithm performed between 70% and 

80% overall correct classification. This is sufficient. We can verify this by referring 

back to Table 4.6 - Table 4.15. Here we see that a major portion of these errors 

associated with misclassification of the voicing state occurs when mixed voiced speech 

(V/UV and UV/V) is labeled as all voiced speech (V/V). Our separation method that is 

used to separate V/V speech mixtures relies on the pitch estimates to perform harmonic 

selection (Section 3.6). This method obtains an estimate of the stronger harmonics first 

and then estimates the weaker harmonics. For the case when the speech segments true 

voicing state is V/UV or UV/V and is misclassified as V/V, we would obtain an accurate 

estimate of the voiced speech segment and a poor estimate of the unvoiced speech 

segment. However, as stated previously, we can replace an unvoiced sound with a noise- 

like sound and still have intelligible speech [45]. The source of error occurs when, based 

on the two pitch estimates, two harmonics overlap and the optimization routine places 

energy at this harmonic location into the unvoiced segment of speech. This erroneously 

transfers energy to the unvoiced speaker. 
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Figure 4.18: Plot of the average relative error versus increasing a priori information, for 

male/female speech mixtures at SIR = 0 dB. No Cheating (NC); True Voicing State 

(TVS); True Pitch (TP). 
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Figure 4.19: Plot of the average relative error versus increasing a priori information, for 

male/male speech mixtures at SIR = 0 dB. No Cheating (NC); True Voicing State (TVS); 

True Pitch (TP). 
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Figure 4.20: Plot of the average relative error versus increasing a priori information, for 

female/female speech mixtures at SIR = 0 dB. No Cheating (NC); True Voicing State 

(TVS); True Pitch (TP). 
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Figure 4.21: Plot of the average relative error versus increasing a priori information, for 

male/female speech mixtures at SIR = -6 dB. No Cheating (NC); True Voicing State 

(TVS); True Pitch (TP). 
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The error term between our original signal and reconstructed signal can be broken 

down into errors due to voicing state misclassification (Type I) and errors due to 

processing (Type II). Type I errors occur when co-channel voicing state of a segment of 

speech is incorrect. Type II errors occur when the co-channel voicing state is labeled 

correctly, but the separation process performs poorly in separating the two speech signals. 

We can further consider those errors associated with each co-channel voicing state. 

Referring to Table 4.24 - Table 4.29, we present cumulative relative error measurements 

for each speaker in the four sentence pairs of male/female, male/male and female/female 

speech mixtures. In these tables, we have identified the percentage of frames in which 

the error measurement exceeded a given threshold. Along the first row in the table is the 

percentage of frames in which the error measurement exceeded our given threshold for 

each co-channel voicing state. The second row represents the percentage of frames, for 

each co-channel voicing state, which exceeded the threshold but whose voicing state was 

correctly classified. The third row represents our Type I error, or the percentage of the 

total error measurement that resulted from misclassification of the voicing state. The last 

row represents our Type II error, the percentage of the total error measurement that 

resulted from our separation processing. 
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Table 4.24:   Contribution and percentage of errors per voicing state, for the Male in 

Male/Female speech mixtures at SIR = 0 dB. 

Male SIL V/V v/uv uv/v uv/uv 

% of frames with errors > 
threshold 

12.09 8.38 0.78 44.25 34.50 

% of frames with errors > 12.09 6.82 0 39.57 29.43 

threshold & correct voicing 
state 

Type I error (VSD) 0 0.08 0.08 3.05 5.07 

Type II error (Processing) 1.98 0.32 0 40.02 49.40 

Table 4.25:   Contribution and percentage of errors per voicing state, for the Female in 

Male/Female speech mixtures at SIR = 0 dB. 

Female SIL V/V V/UV UV/V UV/UV 

% of frames with errors > 11.76 24.61 37.43 2.67 23.53 

threshold 

% of frames with errors > 4.29 6.04 7.60 0.39 6.24 

threshold & correct voicing 
state 

Type I error (VSD) 0 2.04 25.10 0.60 4.15 

Type II error (Processing) 7.53 4.13 25.16 0.26 31.03 
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Table 4.26:   Contribution and percentage of errors per voicing state, for the Malel in 

Malel/Male2 speech mixtures at SIR = 0 dB. 

Malel SIL V/V v/uv uv/v uv/uv 

% of frames with errors > 17.06 13.21 5.04 33.98 30.71 
threshold 

% of frames with errors > 17.06 10.09 0.74 23.15 24.04 
threshold & correct voicing 
state 

Type I error (VSD) 0 0.10 0.17 22.73 13.60 

Type II error (Processing) 2.94 0.25 0.01 34.82 25.38 

Table 4.27:   Contribution and percentage of errors per voicing state, for the Male2 in 

Malel/Male2 speech mixtures at SIR = 0 dB. 

Malel SIL V/V V/UV UV/V UV/UV 

% of frames with errors > 0.47 59.53 22.79 4.65 12.56 
threshold 

% of frames with errors > 0.15 15.88 3.71 0 2.82 
threshold & correct voicing 
state 

Type I error (VSD) 0 3.35 31.77 2.22 1.38 

Type II error (processing) 0.12 36.46 10.68 0 14.02 
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Table 4.28:  Contribution and percentage of errors per voicing state, for the Female 1 in 

Femalel/Female2 speech mixtures at SIR = 0 dB. 

Femalel SIL v/v v/uv uv/v uv/uv 

% of frames with errors > 1.22 29.67 11.38 35.37 22.36 

threshold 

% of frames with errors > 1.22 21.95 0.81 12.20 15.45 

threshold & correct voicing 
state 

Type I error (VSD) 0 3.20 3.37 27.60 2.47 

Type II error (Processing) 0.30 5.42 0.20 7.29 50.15 

Table 4.29: Contribution and percentage of errors per voicing state, for the Female2 in 

Female 1/Female2 speech mixtures at SIR = 0 dB. 

Female2 SIL V/V V/UV UV/V UV/UV 

% of frames with errors > 11.99 25.50 34.80 5.24 22.47 

threshold 

% of frames with errors > 28.46 49.59 44.72 1.63 47.15 

threshold & correct voicing 
state 

Type I error (VSD) 0 0.07 61.84 0.03 3.45 

Type II error (Processing) 0.78 0.49 18.57 0.02 14.75 
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From these measurements we see that a small number of the V/V frames which 

were correctly classified, had error measurements above the threshold but that the error 

due to processing was consistently low for all the speech mixtures. The major portion of 

this error is a result of the harmonics between two speakers overlapping. A high 

percentage of error was associated with the misclassification of mixed voiced (V/UV, 

UV/V) and UV/UV speech segments. A large portion of this error occurs when one 

speaker is silent and the other is voiced or unvoiced. In these cases, the silent segment is 

replaced with an unvoiced speech segment. This error term accumulates when one 

speaker is silent for extended intervals of time. Specifically, for the male/female speech 

mixtures, the male speech signals were consistently shorter in length than the female 

speech signals, resulting in a large percentage of error due to processing for the UV/V 

and UV/UV states. For the same gender speech mixtures, a large portion of the total error 

measurement was due to voicing state error in the V/UV and UV/V co-channel speech 

states. This is a result of the mixed speech being incorrectly identified as V/V speech. 

Our next experiment was to test the overall effectiveness of our speaker separation 

system when the signal to interferer ratio (SIR) varied. We conducted experiments at 

average SIRs of 0, -6 and -12 dB. These tests were conducted on the same set of speech 

signals used in the previous test. Our results are presented in Figure 4.22 through Figure 

4.28. 

In Figure 4.22 through Figure 4.24 we show the average relative error for the 

three different speech mixtures versus a decreasing signal to interferer ratio (SIR). Here 

we see that for all three cases the error measurement between the original signal and the 
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reconstructed signal decreased for the stronger speaker and increased for the weaker 

speaker. The co-channel error measurement stayed relatively constant. 

As we decrease the SIR (increase the energy of the interfering signal), we see that 

for the voicing state determination algorithm, the overall percentage of correct detects 

decreased for the male/female and male/male speech mixtures, but increased for the 

female/female speech mixture. See Figure 4.25. In Figure 4.26 we see that the 

percentage of correct detects for each voicing state varied only slightly as the SIR 

decreased for the male/female case. For the same gender case, the performance of the 

VSDA for each co-channel voicing state stayed relatively constant except for the mixed 

voiced states (V/UV and UV/V). In this case the percentage of correct detects for the 

UV/V case decreased significantly as the SIR decreased. This is a result of the voiced 

speech from the stronger speaker masking the unvoiced speech from the weaker speaker. 

In these cases the speech segment is misclassified as V/UV or V/V speech. This variation 

was not as significant for the male/female speech mixtures. 
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Figure 4.22:    Plot of the average relative error versus SIR = 0, -6 and -12 dB for 

male/female speech mixtures. 
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Figure 4.23:   Plot of the average relative error versus SIR = 0, -6, and -12 dB for 

male/male speech mixtures. 
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Figure 4.26: Plot of the cumulative percent correct detect of the five voicing states of co- 

channel speech in the male/female speech mixtures at SIR = 0, -6, and -12 dB. 
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Figure 4.27: Plot of the cumulative percent correct detect of the five voicing states of co- 

channel speech in the male/male speech mixtures at SIR = 0, -6, and -12 dB. 
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Figure 4.28: Plot of the cumulative percent correct detect of the five voicing states of co- 

channel speech in the female/female speech mixtures at SIR = 0, -6, and -12 dB. 
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Our last experiment was to test our co-channel speaker separation system on real 

speech signals. We used speech data taken from the RPI_COC database. The two speech 

signals came from a male and female speaker. The male talker is considered the desired 

speaker. Training for the voicing state determination algorithm was conducted using 60 

seconds of speech for each speaker. This data was used to create 2000 segments of co- 

channel speech for each of the co-channel voicing states. This training is similar to the 

training using the TMIT database speech. Testing was conducted on approximately six 

seconds worth of speech. The spoken sentence of the male talker was: 

"A short segment of voiced speech can be modeled as a slowly-varying vocal tract 

filter." 

The spoken sentence of the female talker was: 

"Voicing state determination is a method of classifying the voicing state of a 

segment of speech." 

The first test consisted of creating the co-channel speech signal by combining two 

independently recorded speech sentences. This provided an opportunity to test the VSDA 

(Bayes classifier) and the joint pitch estimation algorithm on the RPI_COC speech 

signals. The results of the VSDA are given in Table 4.30. We had an overall detection 

rate of 80.21%. We can see from this table that a significant percentage of the all-voiced 

speech segments (V/V) were misclassified as mixed voiced (V/UV, UV/V). However, 

there was only a small percentage of the V/UV and UV/V speech classified as V/V. The 

overall performance is consistent with the results obtained using the TIMIT_COC 

database, however for the individual co-channel voicing states, there is significant 
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improvement in classifying the mixed voiced speech. This is in part due to the amount of 

training data used to train the voicing state classifier. 

In Figure 4.29 we show a comparison between the pitch contours measured from 

the uncorrupted speech with the pitch contours measured from the co-channel speech. 

We obtained an accurate measurement of the pitch contour for the female speaker, but 

had several areas in which the pitch value of the male speaker measured from the co- 

channel speech signal was significantly higher than the referenced pitch value measured 

from the uncorrupted speech signal. This error was mainly due to poor harmonic 

suppression of the female talker. 

In Figure 4.30 and Figure 4.31 a comparison between the original speech signal 

and the reconstructed speech signal obtained from our co-channel separation system is 

given. Here we can clearly identify the error which resulted from when the male speech 

signal was silent and the female talker was active. The relative error measurements were 

0.4723, 0.4574, and 0.2202 for the male, female and co-channel signals respectively. 

These results are similar to the ones obtained with the TIMIT_COC database. 

The second test consisted of creating a true co-channel speech signal by 

simultaneously recording the same two sentences given above, onto a single channel 

using a single microphone. The reconstructed speech signals from this test using our 

speaker separation system are provided in Figure 4.32. Listening tests comparing the 

reconstructed signals, obtained from the co-channel speech signal mixed on the computer, 

with the co-channel speech signal recorded from a single microphone demonstrate similar 

intelligibility performance. 
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Table 4.30: Confusion matrix, using the Bayes Classifier, of Male/Female co-channel 

speech mixture, from the RPI_COC database, SIR = 0 dB. Overall 80.21% of the speech 

segments were correctly classified. Values are in percent detection with raw scores in 

parentheses. 

Voicing SIL V/V V/UV UV/V UV/UV 

State 
SIL 100 (36) 0 1.15(1) 0 13.89 (5) 

v/v 0 69.60 (87) 5.75 (5) 5.56 (5) 0 

v/uv 0 12.00 (15) 78.16(68) 1.11(1) 2.78 (1) 

uv/v 0 17.60 (22) 5.75 (5) 87.78 (79) 0 

uv/uv 0 0.80(1) 9.20 (8) 5.56 (5) 83.33 (30) 
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Figure 4.29: Comparison between pitch contour measured on uncorrupted speech (solid 

line) and from the co-channel speech (dotted line) for (a) male speaker, and (b) female 

speaker. Speech was taken from the RPI_COC database, SIR = 0 dB. 
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Figure 4.30: Male speech signal, from a male/female co-channel real speech mixture at 

SIR = 0 dB. (a) Reconstructed male speech signal and (b) original male speech signal. 
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5. DISCUSSION 

5.1 Conclusions 

In this research we have developed and presented a unique technique of separating 

overlapping speech signals recorded over a single channel. This system estimates the 

voicing state of each speaker, on a frame by frame basis. It then measures the pitch 

frequency of each segment of voiced speech and creates a pitch contour for each speaker. 

Using the pitch frequency, the system performs harmonic selection to assign initial 

estimates of the harmonics associated with each speaker. Our design uses a constrained 

nonlinear optimization algorithm to separate overlapping voiced speech signals and 

conventional filtering techniques to separate co-channel speech segments which are a 

combination of voiced and unvoiced speech. 

We have made significant contributions to speaker separation. We developed a 

voicing state determination algorithm to classify the voicing state of co-channel speech. 

We have tested this algorithm using the Bayes, ^-nearest neighbor, and Parzen window 

classifiers. We have tested and presented results for male/female, male/male, and 

female/female speech mixtures under varying SIRs. We have shown that we can 

accurately classify the voicing state of two overlapping speech signals. Performance on 

male/female speech mixtures is higher than same gender speech mixtures. We have 

developed a joint pitch estimation algorithm using the maximum likelihood pitch 

estimator and harmonic magnitude suppression. We have tested and presented results for 

varying speech mixtures under varying SIRs.  This technique performs accurately when 
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the pitch contours are well separated. We have developed a technique to perform 

harmonic selection to estimate the harmonic parameters for each speaker. We have 

developed and tested a constrained nonlinear least squares optimization algorithm to 

separate two overlapping voiced speech segments. We have shown that this technique 

can accurately estimate the amplitude, phase and frequency of multiple harmonics of 

overlapping vocalic speech segments. Finally, we have implemented and tested these 

algorithms into an end-to-end speaker separation system and have shown their 

performance in separating co-channel speech. Our system was tested and results were 

provided   using   real   speech   signals   in   simulated   and   real   co-channel   speaker 

environments. 

Optimizing the amplitude and phase of each significant harmonic can be used to 

separate two overlapping voiced speech segments. Including the center frequency terms 

as optimization parameters significantly reduces the error between the measured co- 

channel signal and the sum of the estimated desired and interfering speech signals but 

significantly increases the processing time. However, this has a lesser effect on reducing 

the error between the true speech signals and the reconstructed speech signals. We 

attribute this to the error term used in the optimization routine. Obtaining a minimum 

error between the sum of the measured signals and the sum of the reconstructed signals 

does not guarantee a minimum error between the two measured signals and the two 

reconstructed signals. 

We have demonstrated the capability to separate two speech signals recorded over 

a single channel.   The results we obtained using speech extracted from the RPI_COC 
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database provides a clear indication that our results using the TIMIT_COC database are 

an accurate representation of the overall performance we would expect in a co-channel 

speaker environment. Our voicing state determination algorithm, joint pitch estimation 

algorithm, and adaptive speaker separation system perform optimal with male/female 

speech mixtures at an average SIR = 0 dB. 

5.2 Future Research 

In our research we have presented a co-channel speaker separation system which 

does not use a priori information to process and separate co-channel speech. Our system 

represents a significant contribution to the area of co-channel speaker separation. 

However, this technique brings to the forefront several areas which still need further 

investigation. 

5.2.1 Error Measurement 

Separating the speech signals based on finding the minimum error between the 

sum of the measured speech signals and the sum of the estimated speech signals will not 

guarantee a minimum error between the true speech signals and the estimated speech 

signals. Other error terms need to be investigated. 
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5.2.2 Voicing State Determination 

A technique needs to be developed which will perform unsupervised learning of 

the VSDA using training data extracted from the co-channel speech. This would then 

require a technique which can identify the intervals of time when one speaker is active 

and the other speaker is silent. In a realistic co-channel speaker environment, one speaker 

may be silent for extended intervals of time, thereby providing the necessary training data 

and limiting separation to shorter segments of speech. This will improve the robustness 

of our co-channel speaker system to operate in more realistic co-channel speaker 

environments. 

5.2.3 Joint Pitch Estimation 

Accurate pitch contours of both speakers are crucial to most speaker separation 

systems. Improved joint pitch estimation and pitch tracking of co-channel speech is 

required to advance the current performance of most co-channel speaker separation 

systems. 
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